【題目】1)如圖①,RtABC中,∠C90°AC3,BC4,點DAB邊上任意一點,則CD的最小值為____

2)如圖②,矩形ABCD中,AB3,BC4,點M、點N分別在BD、BC上,求CM+MN的最小值____

【答案】

【解析】

1)先利用點到直線的距離確定CD最小時點D位置,再用三角形的面積求出CD的長;

2)先根據(jù)軸對稱確定出點MN的位置,再利用面積求出CF,進而求出CE,最后用三角函數(shù)即可求出CM+MN的最小值.

1)解:如圖①,過點CCDABD,

根據(jù)點到直線的距離垂線段最短,此時CD最小,

RtABC中,AC=3,BC=4,根據(jù)勾股定理得,AB=5

2)如圖②,作出點C關于BD的對稱點E,

過點EENBCN,交BDM,連接CM,此時CM + MN= EN最;

∵四邊形ABCD是矩形,

∴∠BCD=90°,CD=AB=3,

BC4,

根據(jù)勾股定理得,BD=5,
CEBC,

CF=

由對稱得,CE=2CF=

RtBCF中,cosBCF=

sinBCF=

RtCEN中,EN=CE·sinBCF=;

即:CM+MN的最小值為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊由長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊長為x米.

(1)若苗圃園的面積為72平方米,求x;

(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】5根細木棒,它們的長度分別是、、、.從中任取3根恰能搭成一個三角形的概率是___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將ABC沿BC邊上的中線AD平移到A'B'C'的位置,已知ABC的面積為9,陰影部分三角形的面積為4.若AA'=1,則A'D等于( 。

A. 2 B. 3 C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線AB與x軸交于點B,與y軸交于點A,與反比例函數(shù)y=的圖象在第二象限交于點C,CEx軸,垂足為點E,tanABO=,OB=4,OE=2.

1求反比例函數(shù)的解析式;

2若點D是反比例函數(shù)圖象在第四象限上的點,過點D作DFy軸,垂足為點F,連接OD、BF,如果SBAF=4SDFO,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“長跑”是中考體育考試項目之一.某中學為了解九年級學生“長跑”的情況,隨機抽取部分九年級學生,測試其長跑成績(男子1000米,女子800米),按長跑的時間的長短依次分為AB,C,D四個等級進行統(tǒng)計,并繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:

1)在這次調查中共抽取了  名學生,扇形統(tǒng)計圖中,D類所對應的扇形圓心角大小為 ;

2)所抽取學生“長跑”測試成績的中位數(shù)會落在 等級;

3)若該校九年級共有900名學生,請你估計該校C等級的學生約在多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線yxx軸、y軸分別相交于A、B兩點,圓心P的坐標為(1,0),⊙Py軸相切于點O.若將⊙P沿x軸向左移動,當⊙P與該直線相交時,滿足橫坐標為整數(shù)的點P的個數(shù)是(

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠PAQ=36°,點B為射線AQ上一固定點,按以下步驟作圖:①分別以A,B為圓心,大于AB的長為半徑畫弧,相交于兩點M,N;②作直線MN交射線AP 于點D,連接 BD;③以B為圓心,BA長為半徑畫弧,交射線AP 于點C; 根據(jù)以上作圖過程及所作圖形,下列結論中錯誤的是(

A.CDB=72°B.ADB∽△ABCC.CDAD=21D.ABC=3ACB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】目前,步行已成為人們最喜愛的健身方式之一,通過手機可以計算行走的步數(shù)與相應的能量消耗.對比手機數(shù)據(jù)發(fā)現(xiàn),小明步行消耗330000卡能量的步數(shù)與小紅步行消耗300000卡能量的步數(shù)相同.已知小明平均每步消耗的能量比小紅平均每步消耗的能量多3卡,求小紅平均每步消耗能量的卡數(shù).

查看答案和解析>>

同步練習冊答案