【題目】如圖所示, 是的角平分線,以點(diǎn)為圓心, 為半徑作圓交的延長(zhǎng)線于點(diǎn),交于點(diǎn),交于點(diǎn),且.
()求證: ;
()求證:點(diǎn)是的中點(diǎn);
()如果,求半徑的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)5.
【解析】試題分析:(1)由直徑所對(duì)的圓周角等于,即可得證;
(2)由AD是△ABC的角平分線,∠B=∠CAE,易證得∠ADE=∠DAE,即可得ED=EA,又由ED是直徑,根據(jù)直徑所對(duì)的圓周角是直角,可得EF⊥AD,由三線合一的知識(shí),即可判定點(diǎn)F是AD的中點(diǎn);
(3)易證得△AEC∽△BEA,然后由相似三角形的對(duì)應(yīng)邊成比例,即可求得答案.
試題解析:()∵是⊙直徑,
∴,
∴.
()∵平分,
∴,
又∵,
∴,
又∵,
∴,
∴是等腰三角形,
∵,
∴是中點(diǎn)(三線合一).
()設(shè)⊙半徑為,
∵,
,
,
∴,
∴在和中
,
∴,
∴,
,
,
,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的材料,回答問(wèn)題:
解方程x4-5x2+4=0,這是一個(gè)一元四次方程,根據(jù)該方程的特點(diǎn),它的解法通常是:
設(shè)x2=y,那么x4=y2,于是原方程可變?yōu)?/span>y2-5y+4=0 ①,解得y1=1,y2=4.
當(dāng)y=1時(shí),x2=1,∴x=±1;
當(dāng)y=4時(shí),x2=4,∴x=±2;
∴原方程有四個(gè)根:x1=1,x2=-1,x3=2,x4=-2.
在由原方程得到方程①的過(guò)程中,利用換元法達(dá)到降次的目的,體現(xiàn)了數(shù)學(xué)的轉(zhuǎn)化思想,請(qǐng)利用上述方法解方程
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長(zhǎng)為半徑畫弧分別交AB、AC于點(diǎn)M和N,再分別以M、N為圓心,大于MN的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長(zhǎng)交BC于點(diǎn)D. 下列結(jié)論:①AD是∠BAC的平分線;②點(diǎn)D在AB的垂直平分線上;③∠ADC=60°;④。其中正確的結(jié)論有( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 中, , ,點(diǎn)是線段延長(zhǎng)線上任意一點(diǎn),以為直角邊作等腰直角,且,連結(jié).
()求證: .
()在點(diǎn)運(yùn)動(dòng)過(guò)程中,試問(wèn)的度數(shù)是否會(huì)變化?若不變,請(qǐng)求出它的度數(shù),若變化,請(qǐng)說(shuō)明它的變化趨勢(shì).
()已知,設(shè), .
①試求關(guān)于的函數(shù)表達(dá)式.
②當(dāng)時(shí),求的外接圓半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點(diǎn).
(1)求證:△ACE≌△BCD;
(2)若AD=5,BD=12,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司需招聘一名員工,對(duì)應(yīng)聘者甲、乙、丙從筆試、面試、體能三個(gè)方面進(jìn)行量化考核.甲、乙、丙各項(xiàng)得分如下表:
筆 試 | 面 試 | 體 能 | |
甲 | 85 | 80 | 75 |
乙 | 80 | 90 | 73 |
丙 | 83 | 79 | 90 |
(1)根據(jù)三項(xiàng)得分的平均分,從高到低確定三名應(yīng)聘者的排名順序.
(2)該公司規(guī)定:筆試,面試、體能得分分別不得低于80分,80分,70分,并按60%,30%,10%的比例計(jì)入總分(不計(jì)其他因素條件),請(qǐng)你說(shuō)明誰(shuí)將被錄用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半圓O的直徑MN=6cm,在△ABC中,∠ACB=90°,∠ABC=30°,BC=6cm,半圓O以1cm/s的速度從左向右運(yùn)動(dòng),在運(yùn)動(dòng)過(guò)程中,點(diǎn)M、N始終在直線BC上,設(shè)運(yùn)動(dòng)時(shí)間為t(s),當(dāng)t=0s時(shí),半圓O在△ABC的左側(cè),OC=4cm.
(1)當(dāng)t為何值時(shí),△ABC的一邊所在的直線與半圓O所在的圓相切?
(2)當(dāng)△ABC的一邊所在的直線與半圓O所在圓相切時(shí),如果半圓O與直線MN圍成的區(qū)域與△ABC三邊圍成的區(qū)域有重疊部分,求重疊部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一個(gè)直角坐標(biāo)系中作出y=x2,y=x2-1的圖象.
(1)分別指出它們的開(kāi)口方向、對(duì)稱軸以及頂點(diǎn)坐標(biāo);
(2)拋物線y=x2-1與拋物線y=x2有什么關(guān)系?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com