分析 (1)連接BF,過D作DM⊥BF,過E作EN⊥BF于N,于是得到MN=DE=25cm,EN=DM,根據(jù)平行線的性質(zhì)得到∠F=∠ODE=60°,∠B=∠OED=50°,求得EN=DM=20$\sqrt{3}$=34.6,MF=20,由三角函數(shù)的定義得到BN=$\frac{EN}{tan50°}$=$\frac{20\sqrt{3}}{1.19}$≈29.08,于是得到結(jié)論;
(2)根據(jù)三角函數(shù)的定義即刻得到結(jié)論.
解答 解:(1)連接BF,過D作DM⊥BF,過E作EN⊥BF于N,
則MN=DE=25cm,EN=DM,
∵DE∥BF,
∴∠F=∠ODE=60°,∠B=∠OED=50°,
∵DF=40,
∴EN=DM=20$\sqrt{3}$=34.6,MF=20,
∴BN=$\frac{EN}{tan50°}$=$\frac{20\sqrt{3}}{1.19}$≈29.08,
∴BF=BN+MN+MF=74.08cm,
故兩支架著地點B,F(xiàn)之間的距離我74.08cm;
(2)在Rt△ADE中,AD=DE•tan50°=29.75cm,
∴AM=29.75+20$\sqrt{3}$≈64cm,
故椅子的高度是64cm.
點評 題主要考查解直角三角形的應用,解直角三角形的一般過程是:①將實際問題抽象為數(shù)學問題(畫出平面圖形,構(gòu)造出直角三角形轉(zhuǎn)化為解直角三角形問題).②根據(jù)題目已知特點選用適當銳角三角函數(shù)或邊角關(guān)系去解直角三角形,得到數(shù)學問題的答案,再轉(zhuǎn)化得到實際問題的答案.
科目:初中數(shù)學 來源: 題型:選擇題
A. | 6 | B. | 3 | C. | $\frac{3}{2}$ | D. | 不能確定 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | -$\sqrt{2}$ | B. | -$\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com