【題目】某市為了處理污水需要鋪設(shè)一條長為2000米的管道,實(shí)際施工時,×××××××,設(shè)原計(jì)劃每天鋪設(shè)管道米,則可列方程,根據(jù)此情景,題目中的“×××××××”表示所丟失的條件,這一條件為(

A.每天比原計(jì)劃多鋪設(shè)10米,結(jié)果延期10天完成任務(wù)

B.每天比原計(jì)劃少鋪設(shè)10米,結(jié)果延期10天完成任務(wù)

C.每天比原計(jì)劃少鋪設(shè)10米,結(jié)果提前10天完成任務(wù)

D.每天比原計(jì)劃多鋪設(shè)10米,結(jié)果提前10天完成任務(wù)

【答案】D

【解析】

工作時間=工作總量÷工作效率.那么表示原來的工作時間,那么就表示現(xiàn)在的工作時間,10就代表原計(jì)劃比現(xiàn)在多的時間.

解:原計(jì)劃每天鋪設(shè)管道米,那么就應(yīng)該是實(shí)際每天比原計(jì)劃多鋪了10米,而用則表示用原計(jì)劃的時間實(shí)際用的時間=10天,那么就說明每天比原計(jì)劃多鋪設(shè)10米,結(jié)果提前10天完成任務(wù).
故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EAD邊上一點(diǎn),PQ垂直平分BE,分別交AD、BE、BC于點(diǎn)PO、Q,連接BP、QE

1)求證:四邊形BPEQ是菱形:

2)若AB6,FAB中點(diǎn),OF4,求菱形BPEQ的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B,C,D的坐標(biāo)分別是(1,7),(1,1),(4,1),(6,1),以C,D,E為頂點(diǎn)的三角形與ABC相似,則點(diǎn)E的坐標(biāo)不可能是

A.(6,0) B.(6,3) C.(6,5) D.(4,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在方格紙中,已知格點(diǎn)ABC和格點(diǎn)O

1)畫出ABC關(guān)于點(diǎn)O對稱的A1B1C1

2)畫出ABC繞點(diǎn)O順時針旋轉(zhuǎn)90°A2B2C2 ;

3)若以點(diǎn)A、OC、D為頂點(diǎn)的四邊形是平行四邊形,則點(diǎn)D的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,正方形ABCD中,以CD為邊作等邊三角形CDE,求∠AED的度數(shù).(畫出相應(yīng)的圖形并解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請?jiān)谙铝袡M線上注明理由.

如圖,在中,點(diǎn),在邊上,點(diǎn)在線段上,若,,點(diǎn)的距離相等.求證:點(diǎn)的距離相等.

證明:∵(已知),

______),

______),

(已知),

______),

∵點(diǎn)的距離相等(已知),

的角平分線(______),

(角平分線的定義),

______),

平分(角平分線的定義),

∴點(diǎn)的距離相等(______).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,B、C、D在同一直線上,△ABC△ECD都是等邊三角形,BEAD相交于點(diǎn)M,

(1)求證:∠CBE=∠CAD;

(2)由(1)可知,圖中的△EBC是由△DAC怎樣變換(填一種變換)得到的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,大圓的弦AB、AC分別切小圓于點(diǎn)M、N

1)求證:AB=AC

2AB8,求圓環(huán)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與坐標(biāo)軸交于A,B,C三點(diǎn),點(diǎn)A的橫坐標(biāo)為﹣1,過點(diǎn)C(0,3)的直線y=﹣x+3x軸交于點(diǎn)Q,點(diǎn)P是線段BC上的一個動點(diǎn),PHOB于點(diǎn)H.若PB=5t,且0<t<1.

(1)確定b,c的值;

(2)寫出點(diǎn)B,Q,P的坐標(biāo)(其中Q,P用含t的式子表示);

(3)依點(diǎn)P的變化,是否存在t的值,使△PQB為等腰三角形?若存在,求出所有t的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案