【題目】如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.
求證:(1)△ABE≌△CDF;(2)四邊形BFDE是平行四邊形.
【答案】(1)(2)證明見解析
【解析】
試題分析:(1)由四邊形ABCD是平行四邊形,根據(jù)平行四邊形的對(duì)邊相等,對(duì)角相等,即可證得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF;
(2)由四邊形ABCD是平行四邊形,根據(jù)平行四邊形對(duì)邊平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可證得DE=BF,然后根據(jù)對(duì)邊平行且相等的四邊形是平行四邊形,即可證得四邊形BFDE是平行四邊形.
證明:(1)∵四邊形ABCD是平行四邊形,
∴∠A=∠C,AB=CD,
在△ABE和△CDF中,
∵,
∴△ABE≌△CDF(SAS);
(2)∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC,
∵AE=CF,
∴AD﹣AE=BC﹣CF,
即DE=BF,
∴四邊形BFDE是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“線段、角、直角三角形、等邊三角形”四個(gè)圖形中,一定是軸對(duì)稱圖形的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在平面直角坐標(biāo)系中,網(wǎng)格中每一個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度,△ABC的頂點(diǎn)均在格點(diǎn)上,三個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,2),B(1,0),C(3,1).
(1)畫出△ABC關(guān)于x軸對(duì)稱的圖形△A1B1C1;
(2)畫出將△ABC繞原點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)90°所得作的△A2B2C2,并求出C2的坐標(biāo);
(3)在旋轉(zhuǎn)過(guò)程中,點(diǎn)A經(jīng)過(guò)的路徑為弧,那么的長(zhǎng)為 ;
(4)△A1B1C1與△A2B2C2成中心對(duì)稱嗎?若成中心對(duì)稱,寫出對(duì)稱中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是矩形,∠EDC=∠CAB,∠DEC=90°.
(1)求證:AC∥DE;
(2)過(guò)點(diǎn)B作BF⊥AC于點(diǎn)F,連接EF,試判別四邊形BCEF的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列以線段a、b、c的長(zhǎng)為邊,能構(gòu)成直角三角形的是( 。
A. a=3,b=4,c=6 B. a=5,b=6,c=7 C. a=6,b=8,c=9 D. a=7,b=24,c=25
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列代數(shù)運(yùn)算正確的是( )
A.xx6=x6 B.(x2)3=x6 C.(x+2)2=x2+4 D.(2x)3=2x3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一輛汽車出發(fā)時(shí)郵箱內(nèi)有油48升,出發(fā)后每行駛1 km耗油0.6升,如果設(shè)剩油量為y(升),行駛路程為x(km).則y與x的關(guān)系式為_________________;這輛汽車行駛35 km時(shí),汽車剩油____升;當(dāng)汽車剩油12升時(shí),行駛了_______千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(﹣3,4),若有一點(diǎn)B(﹣3,y),使AB=5,求點(diǎn)B的坐標(biāo)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com