【題目】將四張邊長各不相同的正方形紙片按如圖方式放入矩形內(nèi)(相鄰紙片之間互不重疊也無縫隙),未被四張正方形紙片覆蓋的部分用陰影表示.設(shè)右上角與左下角陰影部分的周長的差為.若知道的值,則不需測量就能知道周長的正方形的標(biāo)號為(

A.B.C.D.

【答案】D

【解析】

設(shè)①、②、③、④四個正方形的邊長分別為a、b、cd,用a、bc、d表示出右上角、左下角陰影部分的周長,利用整式的加減混合運(yùn)算法則計算,得到答案.

設(shè)①、②、③、④四個正方形的邊長分別為a、b、cd,

由題意得,(a+dbc+b+a+db+bc+c+c)(ad+ad+d+d)=l,

整理得,2d=l,

則知道l的值,則不需測量就能知道正方形④的周長,

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,AB=AC=8BO=AB,點(diǎn)MBC邊上一動點(diǎn),將線段OM繞點(diǎn)O按逆時針方向旋轉(zhuǎn)90°ON,連接AN、CN,則△CAN周長的最小值為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,雙曲線y1與直線y2的圖象交于AB兩點(diǎn).已知點(diǎn)A的坐標(biāo)為(4,1),點(diǎn)Pa,b)是雙曲線y1上的任意一點(diǎn),且0a4

1)分別求出y1、y2的函數(shù)表達(dá)式;

2)連接PAPB,得到△PAB,若4ab,求三角形ABP的面積;

3)當(dāng)點(diǎn)P在雙曲線y1上運(yùn)動時,設(shè)PBx軸于點(diǎn)E,延長PAx軸于點(diǎn)F,判斷PEPF的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,半徑均為1個單位長度的半圓O1、O2、室O3組成一條平滑的曲線,點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右運(yùn)動,速度為每秒個單位長度,則第2018秒時,點(diǎn)P的坐標(biāo)是( 。

A. 20170B. 2018,﹣1C. 2017,1D. 2018,0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】操作體驗:如圖,在矩形ABCD中,點(diǎn)E、F分別在邊AD、BC上,將矩形ABCD沿直線EF折疊,使點(diǎn)D恰好與點(diǎn)B重合,點(diǎn)C落在點(diǎn)C'處.點(diǎn)P為直線EF上一動點(diǎn)(不與E、F重合),過點(diǎn)P分別作直線BE、BF的垂線,垂足分別為點(diǎn)MN,以PM、PN為鄰邊構(gòu)造平行四邊形PMQN

1)如圖1,求證:BE=BF

2)特例感知:如圖2,若DE=5CF=3,當(dāng)點(diǎn)P在線段EF上運(yùn)動時,求平行四邊形PMQN的周長;

3)類比探究:如圖3,當(dāng)點(diǎn)P在線段EF的延長線上運(yùn)動時,若DE=a,CF=b.請直接用含a、b的式子表示QMQN之間的數(shù)量關(guān)系.(不要求寫證明過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程(m﹣1x2x﹣2=0

1)若x=﹣1是方程的一個根,求m的值和方程的另一根;

2)當(dāng)m為何實數(shù)時,方程有實數(shù)根;

3)若x1x2是方程的兩個根,且,試求實數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)左側(cè),B點(diǎn)的坐標(biāo)為(4,0),與y軸交于C(0,﹣4)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動點(diǎn).

(1)求這個二次函數(shù)的表達(dá)式.

(2)連接PO、PC,并把POC沿CO翻折,得到四邊形POP′C,那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請求出此時點(diǎn)P的坐標(biāo);若不存在,請說明理由.

(3)當(dāng)點(diǎn)P運(yùn)動到什么位置時,四邊形ABPC的面積最大?求出此時P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線yax2bxca≠0)的頂點(diǎn)為C1,4),交x軸于A、B兩點(diǎn),交y軸于點(diǎn) D,其中點(diǎn)B的坐標(biāo)為(30.

1)求拋物線的解析式;

2)如圖2,過點(diǎn)A的直線與拋物線交于點(diǎn)E,交y軸于點(diǎn)F,其中點(diǎn)E的橫坐標(biāo)為2,若直線PQ為拋物線的對稱軸,點(diǎn)G為直線PQ上的一動點(diǎn),則x軸上是否存在一點(diǎn)H,使D、G、H、F四點(diǎn)所圍成的四邊形周長最小;若存在,求出這個最小值及點(diǎn)GH的坐標(biāo);若不存在,請說明理由.

3)如圖3,在拋物線上是否存在一點(diǎn)T,過點(diǎn)Tx軸的垂線,垂足為點(diǎn)M,過點(diǎn)MMNBD,交線段AD于點(diǎn)N,連接MD,使△DNM∽△BMD。若存在,求出點(diǎn)T的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,P是對角線BD上的一點(diǎn),點(diǎn)EAD的延長線上,且∠PAE=E,PECD于點(diǎn)F

1)求證:PC=PE;

2)求∠CPE的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案