【題目】如圖1,直線與
相交于
,
兩點,
是
的直徑,
是
上一點,
于點
,連結(jié)
,且
平分
.
(1)求證:是
的切線;
(2)若,
,求
的半徑;
(3)如圖2,在(2)的條件下,點為
上一動點,連接
,
,
,問:線段
,
,
之間存在什么數(shù)量關(guān)系?請說明理由.
【答案】(1)證明見解析;(2)的半徑為
;(3)
.
【解析】
(1)由OA=OD得∠OAD=∠ODA,由AD平分∠CAM得∠OAD=∠DAE,則∠ODA=∠DAE,所以DO∥AB,利用DE⊥AB得到DE⊥OD,然后根據(jù)切線的判定定理即可得到結(jié)論;
(2)連結(jié)DC,先利用勾股定理計算出AD長,由AC是⊙O直徑得到∠ADC=90°,易證得△ACD∽△ADE,利用相似比可計算出AC,即可得到圓的半徑;
(3)可得結(jié)論PC=PD+PB,連接PB、DB,在CP上截取PB=PF,連接BF、BC,可證△PBF為等邊三角形,再證△PBD≌△FBC,即可得結(jié)論.
解:(1)連結(jié),如圖,
∵,
∴,
∵平分
,
∴,
∴.
∴,
∵,
∴,
∴是
的切線;
(2)∵,
,
.
∴,
連結(jié),
∵是
的直徑,
∴,
∵,
∴,
又∵,
∴,
∴,
∴,
解得.
∴的半徑為
.
(3).
理由:連接、
,延長
至點
,使
,
∵,
∴,
∴,
∴,
∴,
∵四邊形內(nèi)接于
,
∴,
∴,
∴,
∵,
∴為等邊三角形,
∴,
∵,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC=20,tanB=,點D為BC邊上的動點(D不與點B,C重合).以D為頂點作∠ADE=∠B,射線DE交AC邊于點E,過點A作AF⊥AD交射線DE于點F,連接CF.
(1)求證:△ABD∽△DCE;
(2)當DE∥AB時(如圖2),求AE的長;
(3)點D在BC邊上運動的過程中,是否存在某個位置,使得DF=CF?若存在,求出此時BD的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=與一次函數(shù)y=ax+b的圖象交于點A(2,2),B(
,n).
(1)求這兩個函數(shù)的解析式;
(2)將一次函數(shù)y=ax+b的圖象沿y軸向下平移m個單位,使平移后的圖象與反比例函數(shù)y=的圖象有且只有一個交點,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線交x軸于A,B兩點,交y軸于點C,其中點B在點A的右側(cè),且AB=7.
(1)如圖1,求拋物線的解析式;
(2)如圖2,點D在第一象限內(nèi)拋物線上,連接CD,AD,AD交y軸于點E.設(shè)點D的橫坐標為d,△CDE的面積為S,求S與d之間的函數(shù)關(guān)系式(不要求寫出自變量d的取值范圍);
(3)如圖3,在(2)的條件下,過點D作DH⊥CE于點H,點P在DH上,連接CP,若∠OCP=2∠DAB,且HE:CP=3:5,求點D的坐標及相應(yīng)S的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與
軸交于點
,與反比例函數(shù)第一象限內(nèi)的圖象交于點
,連接
,若
.
(1)求直線的表達式和反比例函數(shù)的表達式;
(2)若直線與
軸的交點為
,求
的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)與一次函數(shù)
在第三象限交于點
.點
的坐標為(一3,0),點
是
軸左側(cè)的一點.若以
為頂點的四邊形為平行四邊形.則點
的坐標為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場為了吸引顧客,設(shè)計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標有“0元”、“10元”、“20元”和“30元”的字樣.規(guī)定:顧客在本商場同一日內(nèi),每消費滿200元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回),商場根據(jù)兩小球所標金額的和返還相應(yīng)價格的購物券,可以重新在本商場消費,某顧客剛好消費200元.
(1)該顧客至少可得到_____元購物券,至多可得到_______元購物券;
(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟的快速發(fā)展,環(huán)境問題越來越受到人們的關(guān)注.某校學(xué)生會為了了解垃圾分類知識的普及情況,隨機調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為“非常了解”“了解”“了解較少”“不了解”四類,并將調(diào)查結(jié)果繪制成下面兩幅統(tǒng)計圖.
(1)求:本次被調(diào)查的學(xué)生有多少名?補全條形統(tǒng)計圖.
(2)估計該校1200名學(xué)生中“非常了解”與“了解”的人數(shù)和是多少.
(3)被調(diào)查的“非常了解”的學(xué)生中有2名男生,其余為女生,從中隨機抽取2人在全校做垃圾分類知識交流,請利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,直線y=kx+2k(k>0)與x軸交于點P,與雙曲線(x>0)交于點Q,若直線y=4kx-2與直線PQ交于點R(點R在點Q右側(cè)),當RQ≤PQ時,k的取值范圍是__.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com