【題目】如圖,∠ACD是△ABC的外角,∠ABC的平分線與∠ACD的平分線交于點A1,∠A1BC的平分線與∠A1CD的平分線交于點A2,…,∠An﹣1BC的平分線與∠An﹣1CD的平分線交于點An.設(shè)∠A=θ.則:(1)∠A1=_____;(2)∠A2=_____;(3)∠An=_____.
【答案】
【解析】
(1)根據(jù)角平分線的定義可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;
(2)與(1)同理求出∠A2;
(3)根據(jù)求出的結(jié)果,可以發(fā)現(xiàn)后一個角等于前一個角的,根據(jù)此規(guī)律即可得解.
(1)解:(1)∵A1B是∠ABC的平分線,A1C是∠ACD的平分線,
∴∠A1BC=∠ABC,∠A1CD=∠ACD,
又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,
∴(∠A+∠ABC)=∠ABC+∠A1,
∴∠A1=∠A,
∵∠A=θ,
∴∠A1=,
故答案為:;
(2)同理可得∠A2=∠A1=,
故答案為:;
(3)同理可得∠A2=∠A1=×=,
所以∠An=
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠CAB=90°,∠CBA=50°,以AB為直徑作⊙O交BC于點D,點E在邊AC上,且滿足ED=EA.
(1)求∠DOA的度數(shù);
(2)求證:直線ED與⊙O相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,則下列結(jié)論:①;②;③;④;⑤的解為,其中正確的有( )
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊中,分別為的中點,延長至點,使,連結(jié)和.
(1)求證:
(2)猜想:的面積與四邊形的面積的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y= kx +b的圖像如圖所示,看圖填空:
(1)當(dāng)x=0時,y= ;當(dāng)x= 時,y=0
(2)k= ,b= .
(3)當(dāng)y=30時,x= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場計劃購進(jìn)A,B兩種新型節(jié)能臺燈共100盞,A型燈每盞進(jìn)價為30元,售價為45元;B型臺燈每盞進(jìn)價為50元,售價為70元.
(1)若商場預(yù)計進(jìn)貨款為3500元,求A型、B型節(jié)能燈各購進(jìn)多少盞?
根據(jù)題意,先填寫下表,再完成本問解答:
型號 | A型 | B型 |
購進(jìn)數(shù)量(盞) | x | _____ |
購買費用(元) | _____ | _____ |
(2)若商場規(guī)定B型臺燈的進(jìn)貨數(shù)量不超過A型臺燈數(shù)量的3倍,應(yīng)怎樣進(jìn)貨才能使商場在銷售完這批臺燈時獲利最多?此時利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點的坐標(biāo)是,點的坐標(biāo)是,連結(jié),點是線段上的一個動點(包括兩端點),直線上有一動點,連結(jié),已知的面積為,則點的坐標(biāo)為__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用小立方塊搭一個幾何體,使它從正面、上面看到的形狀圖如圖所示,從上面看到的形狀圖的小正方形中的字母表示在該位置小立方塊的個數(shù).試回答下列問題:
(1)a,b,c各表示幾?
(2)這個幾何體最少有幾個小立方塊搭成?最多呢?
(3)當(dāng)d=e=1,f=2時,畫出這個幾何體從左面看到的形狀圖.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com