【題目】如圖,四邊形ABCD中,AD∥BC,AB=CD,BD平分∠ABC,BD⊥DC.
(1)求出sin∠DBC的值;
(2)若AD=2,把∠BOC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)(),交AB于點(diǎn)M,交BC于點(diǎn)N(如圖),求證:四邊形OMBN的面積為一個(gè)定值,并求出這個(gè)定值.
【答案】(1);(2)
【解析】
(1)設(shè),根據(jù)題意可得,根據(jù)BD⊥DC可列出關(guān)于x的方程,即可求解;
(2)根據(jù)AD∥BC,推出,再結(jié)合BD平分∠ABC,即可得到,AB=AD,根據(jù)旋轉(zhuǎn)性質(zhì)得到從而證的,從而證的.
(1)設(shè),
∵AB=CD,
∴∠ABC=∠BCD,
∵BD平分∠ABC,
∴,
∴∠BCD=2∠CBD=2x,
,
,
解得:.
;
(2)證明:,
,
.
,
在△ONC和△OMB中,
,
.
∴,
由(1)可知,∠CBD=30°,
∴∠ACB=∠ACD=30°,
∴
,
即四邊形OMBN的面積為一個(gè)定值,這個(gè)定值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,是的外接圓,是直徑,是外一點(diǎn)且滿足,連接.
(1)求證:是的切線;
(2)若,,,求的長(zhǎng);
(3)如圖2,當(dāng)時(shí),與交于點(diǎn),試寫出、、之間的數(shù)量關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知以的邊為直徑作的外接圓的平分線交于,交于,過(guò)作交的延長(zhǎng)線于.
(1)求證:是切線;
(2)若求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在△ABC中,AB=AC,點(diǎn)D是AB上一點(diǎn),以BD為直徑的⊙0與AC邊相切于點(diǎn)E,交BC于點(diǎn)F,FG⊥AC于點(diǎn)G.
(1)如圖l,求證:GE=GF;
(2)如圖2,連接DE,∠GFC=2∠AED,求證:△ABC為等邊三角形;
(3)如圖3,在(2)的條件下,點(diǎn)H、K、P分別在AB、BC、AC上,AK、BP分別交CH于點(diǎn)M、N,AH=BK,∠PNC﹣∠BAK=60°,CN=6,CM=4,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分10分)(1)如圖1,在△ABC中,點(diǎn)D,E,Q分別在AB,AC,BC上,且DE∥BC,AQ交DE于點(diǎn)P.求證:.
(2)如圖,在△ABC中,∠BAC=90°,正方形DEFG的四個(gè)頂點(diǎn)在△ABC的邊上,連接AG,AF分別交DE于M,N兩點(diǎn).
①如圖2,若AB=AC=1,直接寫出MN的長(zhǎng);
②如圖3,求證MN2=DM·EN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形中,,,,, ,動(dòng)點(diǎn),同時(shí)從點(diǎn)出發(fā),點(diǎn)以的速度沿折線運(yùn)動(dòng)到點(diǎn),點(diǎn)以的速度沿運(yùn)動(dòng)到點(diǎn),設(shè),同時(shí)出發(fā)時(shí),的面積為,則與的函數(shù)圖象大致是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn):如圖1,在等邊中,點(diǎn)為邊上一動(dòng)點(diǎn),交于點(diǎn),將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,連接.則與的數(shù)量關(guān)系是_____,的度數(shù)為______.
(2)拓展探究:如圖2,在中,,,點(diǎn)為邊上一動(dòng)點(diǎn),交于點(diǎn),當(dāng)∠ADF=∠ACF=90°時(shí),求的值.
(3)解決問(wèn)題:如圖3,在中,,點(diǎn)為的延長(zhǎng)線上一點(diǎn),過(guò)點(diǎn)作交的延長(zhǎng)線于點(diǎn),直接寫出當(dāng)時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)E在AC上(且不與點(diǎn)A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)請(qǐng)直接寫出線段AF,AE的數(shù)量關(guān)系 ;
(2)將△CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時(shí),如圖②,連接AE,請(qǐng)判斷線段AF,AE的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)在圖②的基礎(chǔ)上,將△CED繞點(diǎn)C繼續(xù)逆時(shí)針旋轉(zhuǎn),請(qǐng)判斷(2)問(wèn)中的結(jié)論是否發(fā)生變化?若不變,結(jié)合圖③寫出證明過(guò)程;若變化,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某人在山坡坡腳處測(cè)得電視塔尖點(diǎn)的仰角為,沿山坡向上走到處再測(cè)得點(diǎn)的仰角為,已知米,山坡坡度,且在同一條直線上,其中測(cè)傾器高度忽略不計(jì).
(1)求電視塔的高度;(計(jì)算結(jié)果保留根號(hào)形式)
(2)求此人所在位置點(diǎn)的鉛直高度.(結(jié)果精確到0.1米,參考數(shù)據(jù):,)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com