【題目】如圖1,是的外接圓,是直徑,是外一點且滿足,連接.
(1)求證:是的切線;
(2)若,,,求的長;
(3)如圖2,當時,與交于點,試寫出、、之間的數(shù)量關系并證明.
【答案】(1)證明見解析;(2);(3),證明見解析.
【解析】
(1)連接OC,由AB是直徑知∠ACB=90°,由OB=OC知∠OCB=∠B,結合∠DCA=∠B得∠DCA=∠OCB,據(jù)此可得∠DCA+∠ACO=∠OCB+∠ACO=90°,從而得證;
(2)利用AA定理證得,得,從而求解;
(3)在上截取使,連接、.由AB是直徑、∠DAB=45°知∠AEB=90°,據(jù)此得△AEB是等腰直角三角形,AE=BE,再證△ECB≌△EFA得EF=EC,據(jù)此可知△FEC是等腰直角三角形,從而得出FC=EC,從而得證.
解:(1)連接,如圖1所示:
∵是的直徑,∴,
∵,∴,
∵,∴,
∴
,
∴,
∵是半徑
∴是的切線;
(2)解:∵
∴
又∵
∴
∴,
即
∴
即的長為;
(3)解:;
理由如下:
在上截取使,連接、,如圖2所示:
∵是直徑,∴,
∵,∴為等腰直角三角形,
∴,,
在和中,,
∴,
∴,
∴,
∴為等腰直角三角形
∴,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】本學期,大興區(qū)開展了“恰同學少年,品詩詞美韻”中華傳統(tǒng)詩詞大賽活動小江統(tǒng)計了班級30名同學四月份的詩詞背誦數(shù)量,具體數(shù)據(jù)如表所示:
詩詞數(shù)量首 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
人數(shù) | 3 | 4 | 4 | 5 | 7 | 5 | 1 | 1 |
那么這30名同學四月份詩詞背誦數(shù)量的眾數(shù)和中位數(shù)分別是
A. 11,7 B. 7,5 C. 8,8 D. 8,7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在菱形ABCD中,動點P從點B出發(fā),沿折線B→C→D→B運動.設點P經(jīng)過的路程為x,△ABP的面積為y.把y看作x的函數(shù),函數(shù)的圖象如圖②所示,則圖②中的b等于( 。
A. B. C. 5D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,將兩個完全相同的三角形紙片和重合放置,其中,.
(1)操作發(fā)現(xiàn)
如圖2,固定,使繞點旋轉,當點恰好落在邊上時,填空:
①線段與的位置關系是______;
②設的面積為,的面積為,則與的數(shù)量關系是______
(2)猜想論證
當繞點旋轉到如圖3所示的位置時,小明猜想1.中與的數(shù)量關系仍然成立,并嘗試分別作出了和中、邊上的高,請你證明小明的猜想.
(3)拓展探究
已知∠ABC=60°,點是角平分線上一點,,交于點(如圖4).若在射線上存在點,使,請求出相應的的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了響應上級教委的“海航招飛”號召,某校從九年級應屆男生中抽取視力等生理指標合格的部分學生進行了文化課初檢,教務處負責同志將測測試結果分為四個等級:甲、乙、丙、丁,然后將相關數(shù)據(jù)整理為兩幅不完整的統(tǒng)計圖,請依據(jù)相關信息解答下列問題:
(1)本次參加文化課初檢的男生人數(shù)為 ;
(2)扇形圖中m的數(shù)值為 ,把條形統(tǒng)計圖補充完整;
(3)據(jù)統(tǒng)計,全省生理指標過關的九年級男生有2400名左右,若規(guī)定文化課等級為“甲”“乙”的可進行文化課二檢,請估計進入二檢的男生有 ;
(4)本次抽檢進入“甲”等的4名男生中九(1)、九(2)班各占2名,若從“甲”等學生中隨機抽取兩名男生進行調研,請用樹形圖表示抽到的兩名男生恰為九(1)班的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形 ABCD 中,AB=8,BC=12,E 為 AD 中點,F 為 AB 上一點,將△ AEF 沿 EF 折疊后,點 A 恰好落到 CF 上的點 G 處,則折痕 EF 的長是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,□ABCD的對角線AC,BD交于點O,CE平分∠BCD交AB于點E,交BD于點F,且∠ABC=60°,AB=2BC,連接OE.下列結論:①EO⊥AC;②S△AOD=4S△OCF;③AC:BD=:7;④FB2=OFDF.其中正確的是( )
A.①②④B.①③④C.②③④D.①③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,AB=CD,BD平分∠ABC,BD⊥DC.
(1)求出sin∠DBC的值;
(2)若AD=2,把∠BOC繞點O順時針旋轉(),交AB于點M,交BC于點N(如圖),求證:四邊形OMBN的面積為一個定值,并求出這個定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com