【題目】(本題滿分10分)(1)如圖1,在ABC中,點D,E,Q分別在AB,ACBC上,且DEBC,AQDE于點P.求證:.

2如圖,在ABC中,BAC=90°,正方形DEFG的四個頂點在ABC的邊上,連接AG,AF分別交DEMN兩點.

如圖2,若AB=AC=1,直接寫出MN的長;

如圖3,求證MN2=DM·EN.

【答案】(1)證明:在△ABQ中,由于DP∥BQ,∴△ADP∽△ABQ,

∴DP/BQ=AP/AQ.

同理在△ACQ中,EP/CQ=AP/AQ.

∴DP/BQ=EP/CQ.(2)

證明:∵∠B+∠C=90°,∠CEF+∠C=90°.∴∠B=∠CEF,又∵∠BGD=∠EFC,∴△BGD∽△EFC.……3分∴DG/CF=BG/EF,∴DG·EF=CF·BG

又∵DG=GF=EF,∴GF2=CF·BG

由(1)得DM/BG=MN/GF=EN/CF∴(MN/GF)2=(DM/BG)·(EN/CF)

∴MN2=DM·EN

【解析】

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在扇形中,,半徑交弦于點,且,若,則陰影部分的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,過原點的直線與反比例函數(shù)交于點,與反比例函數(shù) 交于點,過點軸的垂線,過點軸的垂線,兩直線交于點,若的面積為,則的值為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點EBC上一點,連接AE,點FAE上一點,連接FC,若∠BAE=∠EFC,CFCD,ABBC32,AF4,則FC的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級數(shù)學(xué)模擬測試中,六名學(xué)生的數(shù)學(xué)成績?nèi)缦卤硭,下列關(guān)于這組數(shù)據(jù)描述正確的是(  )

姓名

小紅

小明

小東

小亮

小麗

小華

成績(分)

110

106

109

111

108

110

A.眾數(shù)是110B.方差是16

C.平均數(shù)是109.5D.中位數(shù)是109

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ADBCABCD,BD平分∠ABC,BDDC

1)求出sinDBC的值;

2)若AD=2,把∠BOC繞點O順時針旋轉(zhuǎn)),交AB于點M,交BC于點N(如圖),求證:四邊形OMBN的面積為一個定值,并求出這個定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生對博鰲論壇會的了解情況,某中學(xué)隨機抽取了部分學(xué)生進行問卷調(diào)查,將調(diào)查結(jié)果記作非常了解,了解,了解較少,不了解.四類分別統(tǒng)計,并繪制了下列兩幅統(tǒng)計圖(不完整).請根據(jù)圖中信息,解答下列問題:

(1)此次共調(diào)查了______名學(xué)生;扇形統(tǒng)計圖中所在的扇形的圓心角度數(shù)為______;

(2)將條形統(tǒng)計圖補充完整;

(3)若該校共有1600名學(xué)生,請你估計對博鰲論壇會的了解情況為非常了解的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)市政府關(guān)于“垃圾不落地市區(qū)更美麗”的主題宣傳活動,某校隨機調(diào)查了部分學(xué)生對垃圾分類知識的掌握情況.調(diào)查選項分為“A:非常了解,B:比較了解,C:了解較少,D:不了解”四種,并將調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:

1)把兩幅統(tǒng)計圖補充完整;

2)若該校學(xué)生有2000名,根據(jù)調(diào)查結(jié)果,估計該校“非常了解”與“比較了解”的學(xué)生共有    名;

3)已知“非常了解”的同學(xué)有3名男生和1名女生,從中隨機抽取2名進行垃圾分類的知識交流,請用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在中,,點的中點,連接,過點平分于點,點上,且

(1)求證:

(2)如圖②,過點的延長線于點

①若,求

②設(shè),求的值.

查看答案和解析>>

同步練習(xí)冊答案