【題目】在平面直角坐標(biāo)系中,我們定義直線為拋物線、bc為常數(shù),夢(mèng)想直線;有一個(gè)頂點(diǎn)在拋物線上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其夢(mèng)想三角形”.

已知拋物線與其夢(mèng)想直線交于A、B兩點(diǎn)點(diǎn)A在點(diǎn)B的左側(cè),與x軸負(fù)半軸交于點(diǎn)C

填空:該拋物線的夢(mèng)想直線的解析式為______,點(diǎn)A的坐標(biāo)為______,點(diǎn)B的坐標(biāo)為______;

如圖,點(diǎn)M為線段CB上一動(dòng)點(diǎn),將AM所在直線為對(duì)稱軸翻折,點(diǎn)C的對(duì)稱點(diǎn)為N,若為該拋物線的夢(mèng)想三角形,求點(diǎn)N的坐標(biāo);

當(dāng)點(diǎn)E在拋物線的對(duì)稱軸上運(yùn)動(dòng)時(shí),在該拋物線的夢(mèng)想直線上,是否存在點(diǎn)F,使得以點(diǎn)AC、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)EF的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】(1);;;(2)N點(diǎn)坐標(biāo)為;(3)、

【解析】試題分析:(1)由夢(mèng)想直線的定義可求得其解析式,聯(lián)立夢(mèng)想直線與拋物線解析式可求得A、B的坐標(biāo);

(2)當(dāng)N點(diǎn)在y軸上時(shí),過(guò)AADy軸于點(diǎn)D,則可知AN=AC,結(jié)合A點(diǎn)坐標(biāo),則可求得ON的長(zhǎng),可求得N點(diǎn)坐標(biāo);當(dāng)M點(diǎn)在y軸上即M點(diǎn)在原點(diǎn)時(shí),過(guò)NNPx軸于點(diǎn)P,由條件可求得NMP=60°,在Rt△NMP中,可求得MPNP的長(zhǎng),則可求得N點(diǎn)坐標(biāo);

(3)當(dāng)AC為平行四邊形的一邊時(shí),過(guò)F作對(duì)稱軸的垂線FH,過(guò)AAKx軸于點(diǎn)K,可證EFH≌△ACK,可求得DF的長(zhǎng),則可求得F點(diǎn)的橫坐標(biāo),從而可求得F點(diǎn)坐標(biāo),由HE的長(zhǎng)可求得E點(diǎn)坐標(biāo);當(dāng)AC為平行四邊形的對(duì)角線時(shí),設(shè)E(﹣1,t),由A、C的坐標(biāo)可表示出AC中點(diǎn),從而可表示出F點(diǎn)的坐標(biāo),代入直線AB的解析式可求得t的值,可求得E、F的坐標(biāo).

(1)∵拋物線,∴其夢(mèng)想直線的解析式為,聯(lián)立夢(mèng)想直線與拋物線解析式可得,解得,∴A(﹣2,),B(1,0),故答案為:;(﹣2,);(1,0);

(2)當(dāng)點(diǎn)Ny軸上時(shí),AMN為夢(mèng)想三角形,如圖1,過(guò)AADy軸于點(diǎn)D,則AD=2,中,令y=0可求得x=﹣3x=1,∴C(﹣3,0),且A(﹣2,),∴AC= =由翻折的性質(zhì)可知AN=AC=,在Rt△AND中,由勾股定理可得DN= = =3,∵OD=,∴ON=﹣3ON=+3,當(dāng)ON=+3時(shí),則MNODCM,與MN=CM矛盾,不合題意,N點(diǎn)坐標(biāo)為(0,﹣3);

當(dāng)M點(diǎn)在y軸上時(shí),則MO重合,過(guò)NNPx軸于點(diǎn)P,如圖2,在Rt△AMD中,AD=2,OD=,∴tan∠DAM==,∴∠DAM=60°,∵ADx軸,∴∠AMC=∠DAO=60°,又由折疊可知NMA=∠AMC=60°,∴∠NMP=60°,且MN=CM=3,∴MP=MN=,NP=MN=,∴此時(shí)N點(diǎn)坐標(biāo)為();

綜上可知N點(diǎn)坐標(biāo)為(0,﹣3)或(,);

(3)①當(dāng)AC為平行四邊形的邊時(shí),如圖3,過(guò)F作對(duì)稱軸的垂線FH,過(guò)AAKx軸于點(diǎn)K,則有ACEFAC=EF,∴∠ACK=∠EFH,在ACKEFH,∵∠ACK=∠EFH,∠AKC=∠EHF,AC=EF,∴△ACK≌△EFH(AAS),∴FH=CK=1,HE=AK=,∵拋物線對(duì)稱軸為x=﹣1,∴F點(diǎn)的橫坐標(biāo)為0或﹣2,∵點(diǎn)F在直線AB上,當(dāng)F點(diǎn)橫坐標(biāo)為0時(shí),則F(0,),此時(shí)點(diǎn)E在直線AB下方,Ey軸的距離為EHOF==,即E點(diǎn)縱坐標(biāo)為﹣,∴E(﹣1,﹣);

當(dāng)F點(diǎn)的橫坐標(biāo)為﹣2時(shí),則FA重合,不合題意,舍去;

當(dāng)AC為平行四邊形的對(duì)角線時(shí),C(﹣3,0),且A(﹣2,),∴線段AC的中點(diǎn)坐標(biāo)為(﹣2.5,),設(shè)E(﹣1,t),Fxy),則x﹣1=2×(﹣2.5),y+t=,∴x=﹣4,y=t,代入直線AB解析式可得t=﹣×(﹣4)+,解得t=﹣,∴E(﹣1,﹣),F(﹣4,);

綜上可知存在滿足條件的點(diǎn)F,此時(shí)E(﹣1,﹣)、F(0,)或E(﹣1,﹣)、F(﹣4,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線AB:y=x+分別交x軸、y軸于點(diǎn)B、A兩點(diǎn),C(3,0),D、E分別為線段AO和線段AC上一動(dòng)點(diǎn),BEy軸于點(diǎn)H,AD=CE.當(dāng)BD+BE的值最小時(shí),則H點(diǎn)的坐標(biāo)為(

A. (0,4) B. (0,5) C. (0, D. (0,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為評(píng)估學(xué)生整理錯(cuò)題集的質(zhì)量情況,進(jìn)行了抽樣調(diào)查,把學(xué)生整理錯(cuò)題集的質(zhì)量分為非常好”、“較好”、“一般”、“不好四個(gè)等級(jí),根據(jù)調(diào)查結(jié)果繪制了下面兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:

(1)本次調(diào)查中,一共調(diào)查了   名學(xué)生;

(2)扇形統(tǒng)計(jì)圖中,m=   ,“非常好部分所在扇形的圓心角度數(shù)為   ;

(3)補(bǔ)全條形統(tǒng)計(jì)圖;

(4)如果4名學(xué)生整理錯(cuò)題集的質(zhì)量情況是:3較好”,1一般,現(xiàn)從中隨機(jī)抽取2人,請(qǐng)用列表或畫樹(shù)狀圖的方法求出兩人都是較好的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=2x﹣4x軸交于點(diǎn)A,與y軸交于點(diǎn)E,過(guò)點(diǎn)AAE的垂線交y軸于點(diǎn)B,連接AB,以AB為邊向上作正方形ABCD(如圖所示),則點(diǎn)D的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,ACBC5,∠ACB80°,OABC中一點(diǎn),∠OAB10°,∠OBA30°,則線段AO的長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著互聯(lián)網(wǎng)經(jīng)濟(jì)的發(fā)展,共享單車越來(lái)越走近老百姓的生活.趙剛同學(xué)對(duì)某站點(diǎn)共享單車的租用情況進(jìn)行了調(diào)查,將該站點(diǎn)一天中市民每次租用其享單車的時(shí)間t(單位:分)(t120)分成A,B,C,D四個(gè)組,進(jìn)行各組人次統(tǒng)計(jì),并繪制了如下的統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:

(1)該站點(diǎn)一天中租用共享單車的總?cè)舜螢?/span>   ,表示A的扇形圓心角的度數(shù)是   

(2)補(bǔ)全條形統(tǒng)計(jì)圖.

(3)“共享單車服務(wù)公司規(guī)定:市民每次使用共享單車時(shí)間不超過(guò)30分鐘收費(fèi)1元,超過(guò)30分鐘收費(fèi)2元,已知該市每天租用共享單車(時(shí)間在2小時(shí)以內(nèi))的市民平均約有5000人次,根據(jù)以上數(shù)據(jù)估計(jì)共享單車服務(wù)公司每天大約收入多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形中,上一點(diǎn),且、分別平分、.

(1)求證:

(2),,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠生產(chǎn)某種零件,每個(gè)零件的成本為40元,出廠單價(jià)為60元,該廠為鼓勵(lì)銷售商訂購(gòu),制定了促銷條件:當(dāng)一次訂購(gòu)量超過(guò)100個(gè)時(shí),每多訂購(gòu)一個(gè),訂購(gòu)的全部零件的出廠單價(jià)就降低0.02元.

(1)若銷售商一次訂購(gòu)x(x>100)個(gè)零件,直接寫出零件的實(shí)際出廠單價(jià)y(元)?

(2)設(shè)銷售商一次訂購(gòu)x(x>100)個(gè)零件時(shí),工廠獲得的利潤(rùn)為W元(W>0).

①求出W(元)與x(個(gè))之間的函數(shù)關(guān)系式及自變量x的取值范圍;并算出銷售商一次訂購(gòu)多少個(gè)零件時(shí),廠家可獲得利潤(rùn)6000元;

②廠家為了達(dá)到既鼓勵(lì)銷售商訂購(gòu)又保證自己能獲取最大利潤(rùn)的目的,重新制定新促銷條件:在原有的基礎(chǔ)上又增加了限制條件﹣﹣銷售商訂購(gòu)的全部零件的實(shí)際出廠單價(jià)不能低于a(元).請(qǐng)你利用函數(shù)及其圖象的性質(zhì)求出a的值;并寫出實(shí)行新促銷條件時(shí)W(元)與x(個(gè))之間的函數(shù)關(guān)系式及自變量x的取值范圍.(工廠出售一個(gè)零件利潤(rùn)=實(shí)際出廠單價(jià)﹣每個(gè)零件的成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為美化校園,準(zhǔn)備在長(zhǎng)35米,寬20米的長(zhǎng)方形場(chǎng)地上,修建若干條寬度相同的道路,余下部分作草坪,并請(qǐng)全校學(xué)生參與方案設(shè)計(jì),現(xiàn)有3位同學(xué)各設(shè)計(jì)了一種方案,圖紙分別如圖l、圖2和圖3所示(陰影部分為草坪).

請(qǐng)你根據(jù)這一問(wèn)題,在每種方案中都只列出方程不解.

①甲方案設(shè)計(jì)圖紙為圖l,設(shè)計(jì)草坪的總面積為600平方米.

②乙方案設(shè)計(jì)圖紙為圖2,設(shè)計(jì)草坪的總面積為600平方米.

③丙方案設(shè)計(jì)圖紙為圖3,設(shè)計(jì)草坪的總面積為540平方米.

查看答案和解析>>

同步練習(xí)冊(cè)答案