【題目】如圖,矩形ABCD中,EDC的中點(diǎn),ADAB2CPBP12,連接EP并延長(zhǎng),交AB的延長(zhǎng)線于點(diǎn)F,APBE相交于點(diǎn)O.下列結(jié)論:①EP平分∠CEB;②PBEF;③PFEF2;④EFEP4AOPO.其中正確的是( 。

A. ①②③B. ①②④C. ①③④D. ③④

【答案】B

【解析】

由條件設(shè)AD=xAB=2x,就可以表示出CP=xBP=x,用三角函數(shù)值可以求出∠EBC的度數(shù)和∠CEP的度數(shù),則∠CEP=BEP,運(yùn)用勾股定理及三角函數(shù)值就可以求出就可以求出BFEF的值,從而可以求出結(jié)論.

解:設(shè)AD=xAB=2x

∵四邊形ABCD是矩形

AD=BC,CD=AB,∠D=C=ABC=90°.DCAB

BC=x,CD=2x

CPBP=12

CP=xBP=x

EDC的中點(diǎn),

CE=CD=x

tanCEP==tanEBC==

∴∠CEP=30°,∠EBC=30°

∴∠CEB=60°

∴∠PEB=30°

∴∠CEP=PEB

EP平分∠CEB,故①正確;

DCAB

∴∠CEP=F=30°,

∴∠F=EBP=30°,∠F=BEF=30°,

∴△EBP∽△EFB

BE·BF=EF·BP

∵∠F=BEF,

BE=BF

PB·EF,故②正確

∵∠F=30°,

PF=2PB=x,

過(guò)點(diǎn)EEGAFG,

∴∠EGF=90°,

EF=2EG=2x

PF·EF=x·2x=8x2

2AD2=2×(x2=6x2

∴PF·EF2AD2,故③錯(cuò)誤.

RtECP中,

∵∠CEP=30°,

EP=2PC=x

tanPAB==

∴∠PAB=30°

∴∠APB=60°

∴∠AOB=90°

RtAOBRtPOB中,由勾股定理得,

AO=xPO=x

4AO·PO=4×x·x=4x2

EF·EP=2x·x=4x2

EF·EP=4AO·PO.故④正確.

故選,B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸交于點(diǎn),,與直線交于點(diǎn),直線軸交于點(diǎn)

(1)求該拋物線的解析式.

(2)點(diǎn)是拋物線上第四象限上的一個(gè)動(dòng)點(diǎn),連接,,當(dāng)的面積最大時(shí),求點(diǎn)的坐標(biāo).

(3)將拋物線的對(duì)稱軸向左平移3個(gè)長(zhǎng)度單位得到直線,點(diǎn)是直線上一點(diǎn),連接,,若直線上存在使最大的點(diǎn),請(qǐng)直接寫(xiě)出滿足條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在等腰直角三角形中,,,DE分別在上,且,此時(shí)有,

(1)如圖①中 繞點(diǎn)A旋轉(zhuǎn)至如圖②時(shí)上述結(jié)論是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

(2)將圖①中的繞點(diǎn)A旋轉(zhuǎn)至DE與直線AC垂直,直線BDCE于點(diǎn)F,若,請(qǐng)畫(huà)出圖形,并求出BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為豐富學(xué)生的課余生活,學(xué)校準(zhǔn)備購(gòu)買部分體育器材,以滿足學(xué)生們的需求.學(xué)校對(duì)“我最喜愛(ài)的體育運(yùn)動(dòng)”進(jìn)行了抽樣調(diào)查(每個(gè)學(xué)生只選一次),根據(jù)調(diào)查結(jié)果繪成如圖所示的兩幅不完整統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息解答下列問(wèn)題.

1)求m、n的值;

2)若該校有2000名學(xué)生,請(qǐng)你根據(jù)樣本數(shù)據(jù),估算該校喜歡踢足球的學(xué)生人數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在鈍角三角形中,分別以為斜邊向的外側(cè)作等腰直角三角形和等腰直角三角形平分于點(diǎn),取的中點(diǎn)的中點(diǎn),連接,,下列結(jié)論:①;②;③;④.其中正確結(jié)論有( )

A. 個(gè)B. 個(gè)C. 個(gè)D. 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知拋物線y=﹣xx3)(0≤x≤3)在x軸上方的部分,記作C1,它與x軸交于點(diǎn)O,A1,將C1繞點(diǎn)A1旋轉(zhuǎn)180°C2,C2x軸交于另一點(diǎn)A2.請(qǐng)繼續(xù)操作并探究:將C2繞點(diǎn)A2旋轉(zhuǎn)180°C3,與x軸交于另一點(diǎn)A3;將C3繞點(diǎn)A3旋轉(zhuǎn)180°C4,與x軸交于另一點(diǎn)A4,這樣依次得到x軸上的點(diǎn)A1,A2,A3,An,及拋物線C1C2,n,n的頂點(diǎn)坐標(biāo)為_____n為正整數(shù),用含n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉?chǎng)購(gòu)物的支付方式更加多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了一份調(diào)查問(wèn)卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)并繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問(wèn)題:

(1)這次活動(dòng)共調(diào)查了   人;在扇形統(tǒng)計(jì)圖中,表示支付寶支付的扇形圓心角的度數(shù)為   

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.觀察此圖,支付方式的眾數(shù)   ”;

(3)在一次購(gòu)物中,小明和小亮都想從微信”、“支付寶”、“銀行卡三種支付方式中選一種方式進(jìn)行支付,請(qǐng)用畫(huà)樹(shù)狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,sin Asin B,AB12MAC的中點(diǎn),BM的垂直平分線交AB于點(diǎn)N,交BM于點(diǎn)P,那么BN的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,BE是它的角平分線,∠C90°,DAB邊上,以DB為直徑的半圓O經(jīng)過(guò)點(diǎn)E,交BC于點(diǎn)F

1)求證:AC是⊙O的切線;

2)已知sinA,⊙O的半徑為4,求圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案