【題目】如圖,平行四邊形ABCD的兩條對角線相交于O,且AC平分∠DAB.
(1)求證:四邊形ABCD是菱形;
(2)若AC=8,BD=6,試求點(diǎn)O到AB的距離.
【答案】(1)證明見解析;(2)
【解析】分析:(1)由平行四邊形的對邊平行得∠DAC=∠BCA,由角平分線的性質(zhì)得∠DAC=∠BAC,即可知∠BCA=∠BAC,從而得AB=BC,即可得證;
(2)由菱形的對角線互相垂直且平分得AO=4、BO=3且∠AOB=90°,利用勾股定理得AB=5,根據(jù)可得答案.
本題解析:
(1)∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠DAC=∠BCA,
又∵AC平分∠DAB,
∴∠DAC=∠BAC,
∴∠BCA=∠BAC,
∴AB=BC,
∴平行四邊形ABCD是菱形;
(2)∵四邊形ABCD是菱形,且AC=8、BD=6,
∴AO=4、BO=3,且∠AOB=90°,
∴AB=,
設(shè)點(diǎn)O到AB的距離為h,
則由S△AOB=×ABh=×AO×BO,即5h=12,
得h=,
即點(diǎn)O到AB的距離為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,對于平面直角坐標(biāo)系x O y中的點(diǎn)A和點(diǎn)P,若將點(diǎn)P繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到點(diǎn)Q,則稱點(diǎn)Q為點(diǎn)P關(guān)于點(diǎn)A的“垂鏈點(diǎn)”.
(1) △PAQ是__________三角形;
(2)已知點(diǎn)A的坐標(biāo)為(0, 0),點(diǎn)P關(guān)于點(diǎn)A的“垂鏈點(diǎn)”為點(diǎn)Q
①若點(diǎn)P的坐標(biāo)為(2, 0),則點(diǎn)Q的坐標(biāo)為___________;
②若點(diǎn)Q的坐標(biāo)為(-2, 1),則點(diǎn)P的坐標(biāo)為___________;
(3)如圖2, 已知點(diǎn)D的坐標(biāo)為(3, 0),點(diǎn)C在直線y=2x上,若點(diǎn)C關(guān)于點(diǎn)D的“垂鏈點(diǎn)”在坐標(biāo)軸上,試求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt中,∠C=90°,AC=BC,在線段CB延長線上取一點(diǎn)P,以AP為直角邊,點(diǎn)P為直角頂點(diǎn),在射線CB上方作等腰 Rt, 過點(diǎn)D作DE⊥CB,垂足為點(diǎn)E.
(1) 依題意補(bǔ)全圖形;
(2) 求證: AC=PE;
(3) 連接DB,并延長交AC的延長線于點(diǎn)F,用等式表示線段CF與AC的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個(gè)批發(fā)店銷售同一種蘋果,在甲批發(fā)店,不論一次購買數(shù)量是多少,價(jià)格均為6元/kg.在乙批發(fā)店,一次購買數(shù)量不超過50kg時(shí),價(jià)格均為7元/kg;一次性購買超過50kg時(shí),其中有50kg的價(jià)格仍為7元/kg,超過50kg的部分價(jià)格為5元/kg.設(shè)小王在同一個(gè)批發(fā)店一次購買蘋果的數(shù)量為kg(>0)
(1)根據(jù)題意填表:a= b=
一次購買數(shù)量(kg) | 30 | 50 | 150 | … |
甲批發(fā)店花費(fèi)(元) | 180 | 300 | 900 | … |
乙批發(fā)店花費(fèi)(元) | a | 350 | b | … |
(2)設(shè)在甲批發(fā)店花費(fèi)元,在乙批發(fā)店花費(fèi)元,分別求,關(guān)于的函數(shù)解析式;
(3)若小王在同一個(gè)批發(fā)店一次性購買蘋果花費(fèi)了360元,則他在甲、乙兩個(gè)批發(fā)店中批發(fā),哪個(gè)批發(fā)店購買數(shù)量多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線AC、BD交于點(diǎn)O, 自點(diǎn)A作AE⊥BD于點(diǎn)E,且BE:ED=1:3,過點(diǎn)O作OF⊥AD于點(diǎn)F,若OF=3cm,則BD的長為( )cm.
A.6B.9C.12D.15
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=﹣x+b的圖象過點(diǎn)A(0,3),點(diǎn)p是該直線上的一個(gè)動點(diǎn),過點(diǎn)P分別作PM垂直x軸于點(diǎn)M,PN垂直y軸于點(diǎn)N,在四邊形PMON上分別截取:PC=MP,MB=OM,OE=ON,ND=NP.
(1)b= ;
(2)求證:四邊形BCDE是平行四邊形;
(3)在直線y=﹣x+b上是否存在這樣的點(diǎn)P,使四邊形BCDE為正方形?若存在,請求出所有符合的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下說法合理的是( )
A. 小明在10次拋圖釘?shù)脑囼?yàn)中發(fā)現(xiàn)3次釘尖朝上,由此他說釘尖朝上的概率是30%
B. 拋擲一枚普通的正六面體骰子,出現(xiàn)6的概率是的意思是每6次就有1次擲得6
C. 某彩票的中獎(jiǎng)機(jī)會是2%,那么如果買100張彩票一定會有2張中獎(jiǎng)。
D. 在一次課堂進(jìn)行的試驗(yàn)中,甲、乙兩組同學(xué)估計(jì)硬幣落地后,正面朝上的概率分別為0.48和0.51。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖形經(jīng)過點(diǎn),且與軸交點(diǎn)的橫坐標(biāo)分別為,,其中,,下列結(jié)論:①;②;③;④.其中正確結(jié)論的序號是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市今年中考理化實(shí)驗(yàn)操作考試,采用學(xué)生抽簽方式?jīng)Q定自己的考試內(nèi)容.規(guī)定:每位考生必須在三個(gè)物理實(shí)驗(yàn)(用紙簽A、B、C表示)和三個(gè)化學(xué)實(shí)驗(yàn)(用紙簽D、E、F表示)中各抽取一個(gè)進(jìn)行考試,小剛在看不到紙簽的情況下,分別從中各隨機(jī)抽取一個(gè).
(1) 用“列表法”或“樹狀圖法”表示所有可能出現(xiàn)的結(jié)果;
(2) 小剛抽到物理實(shí)驗(yàn)B和化學(xué)實(shí)驗(yàn)F(記作事件P)的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com