【題目】4張相同的卡片,上面分別寫有數(shù)字1、2、3、5,將卡片洗勻后背面朝上.

(1)從中任意抽取1張,抽得的卡片上數(shù)字為奇數(shù)的概率是_______;

(2)從中任意抽取1張,把上面的數(shù)字作為十位數(shù),記錄后不放回,再任意抽取1張把上面的數(shù)字作為個位數(shù),求組成的兩位數(shù)是3的倍數(shù)的概率.(用樹狀圖或列表的方法)

【答案】(1) ;(2)

【解析】

1)直接根據(jù)概率公式計算即可;

2)畫樹形圖,確定所有等可能性,再找出符合條件的可能性,求出概率即可.

解:(1 1、2、35四個數(shù)中,奇數(shù)有3個,

∴從中任意抽取1張,抽得的卡片上數(shù)字為奇數(shù)的概率是

2)畫樹形圖得

由樹形圖得,共有12種等可能性,其中組成的兩位數(shù)是3的倍數(shù)的有4中等可能性,

∴組成的兩位數(shù)是3的倍數(shù)的概率是

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知二次函數(shù)y=-x2+bx+c的圖像與x軸的交點為點A(3,0)和點B,與y軸交于點C(03),連接AC.

1)求這個二次函數(shù)的解析式;

2)在(1)中位于第一象限內(nèi)的拋物線上是否存在點D,使得ACD的面積最大?若存在,求出點D的坐標及ACD面積的最大值,若不存在,請說明理由.

3)在拋物線上是否存在點E,使得ACE是以AC為直角邊的直角三角形如果存在,請直接寫出點E的坐標即可;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在6×5的網(wǎng)格(小正方形邊長為1)中,RtABC的三個頂點都在格點上.

1)在網(wǎng)格中,找到格點D,使四邊形ACBD的面積為10,并畫出這個四邊形.

2)借助網(wǎng)格、只用直尺(無刻度)在AB上找一點E,使△AEC為等腰三角形,且AEAC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】掃黑除惡受到廣大人民的關注,某中學對部分學生就掃黑除惡知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:

1)接受問卷調(diào)查的學生共有_______人,扇形統(tǒng)計圖中很了解部分所對應扇形的圓心角為_______;

2)請補全條形統(tǒng)計圖;

3)若該中學共有學生900人,請根據(jù)上述調(diào)查結果,估計該中學學生中對掃黑除惡知識達到很了解基本了解程度的總人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖所示,在中,、分別是的角平分線,交、于點、,連接

1)求證:、互相平分;

2)若,,求線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y1ax22amx+am2+4,直線y2kxkm+4,其中a≠0,a、k、m是常數(shù).

(1)拋物線的頂點坐標是______,并說明上述拋物線與直線是否經(jīng)過同一點(說明理由);

(2)a0,m=2t≤x ≤t+2,y1的最大值為4,求t的范圍;

(3)拋物線的頂點為P,直線與拋物線的另一個交點為Q,對任意的m值,若1≤k≤4,線段PQ(不包括端點)上至少存在兩個橫坐標為整數(shù)的點,求a的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一個晾衣架的實物圖,支架的基本圖形是菱形,MN是晾衣架的一個滑槽,點P在滑槽MN上、下移動時,晾衣架可以伸縮,其示意圖如圖所示,已知每個菱形的邊長均為20cm,且

當點P向下滑至點N處時,測得

求滑槽MN的長度;

此時點A到直線DP的距離是多少?

當點P向上滑至點M處時,點A在相對于的情況下向左移動的距離是多少?

結果精確到,參考數(shù)據(jù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在□ABCD中,點E、F分別在邊CDAB上,且滿足CEAF

1)求證:△ADE≌△CBF

2)連接AC,若AC恰好平分∠EAF,試判斷四邊形AECF為何種特殊的四邊形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+bx+2x軸于點A-1,0),Bn0)(點A在點B的左邊),交y軸于點C

1)當n2時求△ABC的面積.

2)若拋物線的對稱軸為直線xm,當1n4時,求m的取值范圍.

查看答案和解析>>

同步練習冊答案