【題目】在平面直角坐標(biāo)系中,已知反比例函數(shù)滿足:當(dāng)時(shí),的增大而減小.若該反比例函數(shù)的圖象與直線,都經(jīng)過點(diǎn),且,則符合要求的實(shí)數(shù)________個(gè)

【答案】

【解析】

由反比例函數(shù)y=(k≠0),當(dāng)x<0時(shí),yx的增大而減小,可判斷k>0,設(shè)P(x,y),則P點(diǎn)坐標(biāo)滿足反比例函數(shù)與一次函數(shù)解析式,即xy=2k,y+x=k,又因?yàn)?/span>OP2=x2+y2,將已知條件代入,列方程求解.

∵反比例函數(shù)y=(k≠0),當(dāng)x<0時(shí),yx的增大而減小,

k>0,

設(shè)P(x,y),則xy=2k,y+x=k,

x、y為實(shí)數(shù),x、y可看作一元二次方程m2-km+2k=0的兩根,

∴△=3k2-8k≥0,解得k≥k≤0(舍去),

又∵OP2=x2+y2,

x2+y2=7,即(x+y)2-2xy=7,

k)2-4k=7,

解得k=-1,而k≥,

故不存在滿足條件的k.

故答案為:不存在.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

小明遇到這樣一個(gè)問題:

如圖1,在中,平分,.求證:

小明通過思考發(fā)現(xiàn),可以通過“截長、補(bǔ)短”兩種方法解決問題:

方法1:如圖2,在上截取,使得,連接,可以得到全等三角形,進(jìn)而解決問題

方法二:如圖3,延長到點(diǎn),使得,連接,可以得到等腰三角形,進(jìn)而解決問題

1)根據(jù)閱讀材料,任選一種方法證明

2)根據(jù)自己的解題經(jīng)驗(yàn)或參考小明的方法,解決下面的問題:如圖4,四邊形中,上一點(diǎn),,,,探究、、之間的數(shù)量關(guān)系,并證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,CD是⊙O的直徑,ABCD交于點(diǎn)E,點(diǎn)PCD延長線上的一點(diǎn),AP=AC,且∠B=2P.

(1)求證:PA是⊙O的切線;

(2)PD=,求⊙O的直徑;

(3)在(2)的條件下,若點(diǎn)B等分半圓CD,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 是一塊邊長為4米的正方形苗圃,園林部門將其改造為矩形的形狀,其中點(diǎn)邊上,點(diǎn)的延長線上, 設(shè)的長為米,改造后苗圃的面積為平方米.

(1) 之間的函數(shù)關(guān)系式為 (不需寫自變量的取值范圍);

(2)根據(jù)改造方案,改造后的矩形苗圃的面積與原正方形苗圃的面積相等,請(qǐng)問此時(shí)的長為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+mx+n與x軸正半軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C.

(1)利用直尺和圓規(guī),作出拋物線y=x2+mx+n的對(duì)稱軸(尺規(guī)作圖,保留作圖痕跡,不寫作法);

(2)若△OBC是等腰直角三角形,且其腰長為3,求拋物線的解析式;

(3)在(2)的條件下,點(diǎn)P為拋物線對(duì)稱軸上的一點(diǎn),則PA+PC的最小值為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是反比例函數(shù)的圖象的一支.根據(jù)給出的圖象回答下列問題:

1)該函數(shù)的圖象位于哪幾個(gè)象限?請(qǐng)確定m的取值范圍;

2)在這個(gè)函數(shù)圖象的某一支上取點(diǎn)Ax1y1)、Bx2y2).如果y1y2,那么x1x2有怎樣的大小關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形MNOK和正六邊形ABCDEF邊長均為1,把正方形放在正六邊形外,使OK邊與AB邊重合,如圖所示,按下列步驟操作:將正方形在正六邊形外繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),使ON邊與BC邊重合,完成第一次旋轉(zhuǎn);再繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),使MN邊與CD邊重合,完成第二次旋轉(zhuǎn);……在這樣連續(xù)6次旋轉(zhuǎn)的過程中,點(diǎn)B,O間的距離不可能是(  )

A. 0 B. 0.8 C. 2.5 D. 3.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個(gè)反比例函數(shù)在第一象限內(nèi)的圖象如圖所示,點(diǎn)P的圖象上,PC軸于點(diǎn)C,交的圖象于點(diǎn)APC軸于點(diǎn)D,交的圖象于點(diǎn)B. 當(dāng)點(diǎn)P的圖象上運(yùn)動(dòng)時(shí),以下結(jié)論:

的值不會(huì)發(fā)生變化

PAPB始終相等

④當(dāng)點(diǎn)APC的中點(diǎn)時(shí),點(diǎn)B一定是PD的中點(diǎn).

其中一定不正確的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市對(duì)城區(qū)部分路段的人行道地磚、綠化帶、排水管等公用設(shè)施進(jìn)行全面更新改造,根據(jù)市政建設(shè)的需要,需在35天內(nèi)完成工程.現(xiàn)有甲、乙兩個(gè)工程隊(duì)有意承包這項(xiàng)工程,經(jīng)調(diào)查知道,乙工程隊(duì)單獨(dú)完成此項(xiàng)工程的時(shí)間是甲工程隊(duì)單獨(dú)完成此項(xiàng)工程時(shí)間的2倍,若甲、乙兩工程隊(duì)合作,只需10天完成.

1)甲、乙兩個(gè)工程隊(duì)單獨(dú)完成此項(xiàng)工程各需多少天?

2)若甲工程隊(duì)每天的工程費(fèi)用是4萬元,乙工程隊(duì)每天的工程費(fèi)用是2.5萬元,請(qǐng)你設(shè)計(jì)一種方案,既能按時(shí)完工,又能使工程費(fèi)用最少.

查看答案和解析>>

同步練習(xí)冊(cè)答案