【題目】如圖,在△ABC,C=90°,A=30°,ABC的平分線BDACDDEAB于點(diǎn)E,DE=3cm,AC= ( )

A.9cmB.6cmC.12cmD.3cm

【答案】A

【解析】

根據(jù)∠A=30°,可推出∠DBE=CBD=30°,利用全等求出CD=3cm,再根據(jù)直角三角形中30°所對(duì)的直角邊是斜邊一半的性質(zhì)求出AD=6cm,最后算出AC.

∵∠A=30°,C=90°,BD平分∠ABC,

∴∠DBE=CBD=30°,

又∵DEAB,

∴∠DEB=∠C=90°

∵DB=DB

RtCBDRtEBD(AAS),

CD=DE=3cm,

RtAED,A=30°,DE=3cm,

AD=2DE=6cm.

AC=AD+DC=3cm+6cm=9cm.

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)場(chǎng)去年種植了10畝地的南瓜,畝產(chǎn)量為2000kg,根據(jù)市場(chǎng)需要,今年該農(nóng)場(chǎng)擴(kuò)大了種植面積,并且全部種植了高產(chǎn)的新品種南瓜,設(shè)南瓜種植面積的增長(zhǎng)率為x

(1)則今年南瓜的種植面積為   畝;(用含x的代數(shù)式表示)

(2)如果今年南瓜畝產(chǎn)量的增長(zhǎng)率是種植面積的增長(zhǎng)率的,今年南瓜的總產(chǎn)量為60000kg,求南瓜畝產(chǎn)量的增長(zhǎng)率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,,平分,以為頂點(diǎn)作,交于點(diǎn),于點(diǎn)E.

1)求證:;

2)圖1中,若,求的長(zhǎng);

3)如圖2,平分,以為頂點(diǎn)作,交于點(diǎn)于點(diǎn).,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知在直角梯形OABC中,ABOC,BCx軸于點(diǎn)C、A(1,1)、B(3,1).動(dòng)點(diǎn)PO點(diǎn)出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng).過(guò)P點(diǎn)作PQ垂直于直線OA,垂足為Q.設(shè)P點(diǎn)移動(dòng)的時(shí)間為t秒(0<t<4),OPQ與直角梯形OABC重疊部分的面積為S.

(1)求經(jīng)過(guò)O、A、B三點(diǎn)的拋物線解析式;

(2)求St的函數(shù)關(guān)系式;

(3)將△OPQ繞著點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,是否存在t,使得△OPQ的頂點(diǎn)OQ在拋物線上?若存在,直接寫出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有公路l1同側(cè)、l2異側(cè)的兩個(gè)城鎮(zhèn)A,B,如下圖.電信部門要修建一座信號(hào)發(fā)射塔,按照設(shè)計(jì)要求,發(fā)射塔到兩個(gè)城鎮(zhèn)A,B的距離必須相等,到兩條公路l1,l2的距離也必須相等,發(fā)射塔C應(yīng)修建在什么位置?請(qǐng)用尺規(guī)作圖找出所有符合條件的點(diǎn),注明點(diǎn)C的位置.(保留作圖痕跡,不要求寫出畫法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是某同學(xué)對(duì)多項(xiàng)式(x24x+2)(x24x+6+4進(jìn)行因式分解的過(guò)程

解:設(shè)x24xy

原式=(y+2)(y+6+4。ǖ谝徊剑

y2+8y+16。ǖ诙剑

=(y+42(第三步)

=(x24x+42(第四步)

1)該同學(xué)第二步到第三步運(yùn)用了因式分解的   (填序號(hào)).

A.提取公因式 B.平方差公式

C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式

2)該同學(xué)在第四步將y用所設(shè)中的x的代數(shù)式代換,得到因式分解的最后結(jié)果.這個(gè)結(jié)果是否分解到最后?   .(填)如果否,直接寫出最后的結(jié)果   

3)請(qǐng)你模仿以上方法嘗試對(duì)多項(xiàng)式(x22x)(x22x+2+1進(jìn)行因式分解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在學(xué)習(xí)了一次函數(shù)后,某校數(shù)學(xué)興趣小組根據(jù)學(xué)習(xí)的經(jīng)驗(yàn),對(duì)函數(shù)y=-x-2的圖象和性質(zhì)進(jìn)行了探究,下面是該興趣小組的探究過(guò)程,請(qǐng)補(bǔ)充完整:

(1)自變量x的取值范圍是全體實(shí)數(shù),xy的幾組對(duì)應(yīng)值如表:

x

...

-3

-2

-1

0

1

2

3

...

y

...

-5

-4

-3

n

-3

-4

-5

...

n=

②如圖,在所給的平面直角坐標(biāo)系中,描出以表中各組對(duì)應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn)畫出該函數(shù)的圖象;

(2)當(dāng)一2x≤5時(shí),y的取值范圍是

(3)根據(jù)所畫的圖象,請(qǐng)寫出一條關(guān)于該函數(shù)圖象的性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】AB兩地相距l 100米,甲從A地出發(fā),乙從B地出發(fā),相向而行,甲比乙先出發(fā)2分鐘,乙出發(fā)7分鐘后與甲相遇,設(shè)甲、乙兩人相距y米,甲行進(jìn)的時(shí)間為t分鐘,yt之間的函數(shù)關(guān)系如圖所示.請(qǐng)你結(jié)合圖象探究:

(1)甲的行進(jìn)速度為每分鐘__________米,m =____分鐘;

(2)求直線PQ對(duì)應(yīng)的函數(shù)表達(dá)式;

(3)求乙的行進(jìn)速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖甲,對(duì)于平面上不大于90°的∠MON,我們給出如下定義:如果點(diǎn)P在∠MON的內(nèi)部,作PE⊥OM,PF⊥ON,垂足分別為點(diǎn)E、F,那么稱PE+PF的值為點(diǎn)P相對(duì)于∠MON的“點(diǎn)角距離”,記為d(P,∠MON).如圖乙,在平面直角坐標(biāo)系xOy中,點(diǎn)P在坐標(biāo)平面內(nèi),且點(diǎn)P的橫坐標(biāo)比縱坐標(biāo)大2,對(duì)于∠xOy,滿足d(P,∠xOy)=10,點(diǎn)P的坐標(biāo)是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案