【題目】已知的半徑為,的弦,點(diǎn)上,.若點(diǎn)到直線(xiàn)的距離為,則的度數(shù)為______

【答案】,

【解析】

分三種情況:當(dāng)PCABAB延長(zhǎng)線(xiàn)上時(shí),當(dāng)AB垂直平分OP時(shí),當(dāng)點(diǎn)CBA延長(zhǎng)線(xiàn)上時(shí),利用三角函數(shù),平行四邊形的性質(zhì)分別求出的度數(shù).

如圖1,

當(dāng)PCABAB延長(zhǎng)線(xiàn)上時(shí),過(guò)點(diǎn)OOEABE,

,

AE=,

OA=2,

cosOAE=

∴∠OAE=30°,

OE=1,

PC=1OEAB,PCAB,

PC=OEPCOE,

∴四邊形PCEO是平行四邊形,

OPAC

∴∠OPA=PAB,

OA=OP,

∴∠OAP=OPA=PAB,

∴∠PAB=15°

如圖2,當(dāng)AB垂直平分OP時(shí),

OP=2,∴PC=1,

OA=2,OC=1

∴∠BAO=30°,

∴∠AOC=60°

OA=OP,

∴∠OAP=OPA=60°,

ACOP

∴∠PAB=30°

如圖3,當(dāng)點(diǎn)CBA延長(zhǎng)線(xiàn)上時(shí),可知四邊形POEC是平行四邊形,

OPAB,

∴∠AOP=OAB=30°,

OA=OP

∵∠PAO=75°,

∴∠PAB=PAO+OAB=105°,

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)P為⊙O內(nèi)一點(diǎn),A、BC、D為圓上順次四個(gè)點(diǎn),連接ABCD,OMAB于點(diǎn)M,連接MP并延長(zhǎng)交CD于點(diǎn)N,連接PA、PB、PCPD

1)如圖1,若A、PC三點(diǎn)共線(xiàn),B、PD三點(diǎn)共線(xiàn),且ACBD,求證:PNCD

2)如圖2,若PAPD,PAPD,PCPBPCPB,求證:PNCD;

3)如圖3,在(2)的條件下,PA10,PC6,∠APB60°,求MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(xiàn)軸交于兩點(diǎn),與軸交于點(diǎn),其對(duì)稱(chēng)軸為直線(xiàn)

1)直接寫(xiě)出拋物線(xiàn)的解析式;

2)把線(xiàn)段沿軸向右平移,設(shè)平移后、的對(duì)應(yīng)點(diǎn)分別為,當(dāng)落在拋物線(xiàn)上時(shí),求的坐標(biāo);

3)除(2)中的平行四邊形外,在軸和拋物線(xiàn)上是否還分別存在點(diǎn),使得以、、為頂點(diǎn)的四邊形為平行四邊形?若存在,求出的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)軸交于點(diǎn),與軸交于點(diǎn),點(diǎn)、是反比例函數(shù)圖象上的點(diǎn),于點(diǎn),

1)求直線(xiàn)的函數(shù)解析式及反比例函數(shù)的解析式;

2)若、的面積分別為,,,直接寫(xiě)出,,的一個(gè)數(shù)量關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,、、在第二象限,橫坐標(biāo)分別是-4-2、-1,雙曲線(xiàn)過(guò)、三點(diǎn),且

(1)求雙曲線(xiàn)的解析式;

(2)過(guò)點(diǎn)的直線(xiàn)軸于,交軸于,且,且交于另一點(diǎn),求點(diǎn)坐標(biāo);

(3)為邊(順時(shí)針?lè)较?/span>)作正方形,平移正方形使落在軸上,點(diǎn)、對(duì)應(yīng)的點(diǎn)、正好落在反比例函數(shù)上,求對(duì)應(yīng)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn))的頂點(diǎn)為,對(duì)稱(chēng)軸與軸交于點(diǎn),當(dāng)以為對(duì)角線(xiàn)的正方形的另外兩個(gè)頂點(diǎn)、恰好在拋物線(xiàn)上時(shí),我們把這樣的拋物線(xiàn)稱(chēng)為美麗拋物線(xiàn),正方形為它的內(nèi)接正方形.

1)當(dāng)拋物線(xiàn)是美麗拋物線(xiàn)時(shí),則______;當(dāng)拋物線(xiàn)是美麗拋物線(xiàn)時(shí),則______;

2)若拋物線(xiàn)是美麗拋物線(xiàn)時(shí),則請(qǐng)直接寫(xiě)出的數(shù)量關(guān)系;

3)若是美麗拋物線(xiàn)時(shí),(2的數(shù)量關(guān)系成立嗎?為什么?

4)系列美麗拋物線(xiàn)為小于的正整數(shù))頂點(diǎn)在直線(xiàn)上,且它們中恰有兩條美麗拋物線(xiàn)內(nèi)接正方形面積比為.求它們二次項(xiàng)系數(shù)之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某數(shù)學(xué)活動(dòng)小組選定測(cè)量小河對(duì)岸大樹(shù)BC的高度,他們?cè)谛逼律?/span>D處測(cè)得大樹(shù)頂端B的仰角是30°,朝大樹(shù)方向下坡走6米到達(dá)坡底A處,在A處測(cè)得大樹(shù)頂端B的仰角是45°,若坡角∠FAE=30°,求大樹(shù)的高度(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一副三角尺(在中,,,在中,,)如圖擺放,點(diǎn)的中點(diǎn),于點(diǎn),經(jīng)過(guò)點(diǎn),將繞點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)),于點(diǎn),于點(diǎn),則的值為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)活動(dòng)課上,小明和小紅要測(cè)量小河對(duì)岸大樹(shù)BC的高度,小紅在點(diǎn)A測(cè)得大樹(shù)頂端B的仰角為45°,小明從A點(diǎn)出發(fā)沿斜坡走3米到達(dá)斜坡上點(diǎn)D,在此處測(cè)得樹(shù)頂端點(diǎn)B的仰角為31°,且斜坡AF的坡比為12

1)求小明從點(diǎn)A到點(diǎn)D的過(guò)程中,他上升的高度;

2)依據(jù)他們測(cè)量的數(shù)據(jù)能否求出大樹(shù)BC的高度?若能,請(qǐng)計(jì)算;若不能,請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):sin31°≈0.52,cos31°≈0.86tan31°≈0.60

查看答案和解析>>

同步練習(xí)冊(cè)答案