【題目】某工廠計劃生產A、B兩種產品共10件,其生產成本和利潤如下表.
A種產品 | B種產品 | |
成本(萬元/件) | 2 | 5 |
利潤(萬元/件) | 1 | 3 |
(1)若工廠計劃獲利14萬元,問A,B兩種產品應分別生產多少件?
(2)若工廠計劃投入資金不多于44萬元,且獲利多于14萬元,求工廠的最大利潤?
【答案】
(1)解:設生產A種產品x件,則生產B種產品(10﹣x)件,于是有
x+3(10﹣x)=14,
解得:x=8,
則10﹣x=10﹣8=2(件)
所以應生產A種產品8件,B種產品2件;
(2)解:設總利潤為y萬元,應生產A種產品x件,則生產B種產品有(10﹣x)件,由題意有:
,
解得:2≤x<8;
利潤y=x+3(10﹣x)=﹣2x+30,
則y隨x的增大而減小,即可得,A產品生產越少,獲利越大,
∴x=2時,可獲得最大利潤,其最大利潤為2×1+8×3=26萬元.
【解析】(1)由“計劃獲利14萬元”可建立方程x+3(10﹣x)=14,得出結果;(2)由“資金不多于44萬元,且獲利多于14萬元”建立不等式組,求出x的范圍,建立關于利潤的函數,利用函數的單調性求出最值.
【考點精析】解答此題的關鍵在于理解一元一次不等式組的應用的相關知識,掌握1、審:分析題意,找出不等關系;2、設:設未知數;3、列:列出不等式組;4、解:解不等式組;5、檢驗:從不等式組的解集中找出符合題意的答案;6、答:寫出問題答案.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,BC=10,BC邊上的高為3.將點A繞點B逆時針旋轉90°得到點E,繞點C順時針旋轉90°得到點D.沿BC翻折得到點F,從而得到一個凸五邊形BFCDE,則五邊形BFCDE的面積為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】疫情期間,學校為了學生在班級將生活垃圾和廢棄口罩分類丟棄,準備購買A,B兩種型號的垃圾箱,通過市場調研得知:購買3個A型垃圾箱和2個B型垃圾箱共需270元,購買2個A型垃圾箱比購買3個B型垃圾箱少用80元.求每個A型垃圾箱和B型垃圾箱各多少元?學校購買A型垃圾桶8個,B型垃圾桶16個,共花費多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=CD,E、F、G、H分別為AD、BC、BD、AC的中點,順次連接E、G、F、H.
(1)猜想四邊形EGFH是什么特殊的四邊形,并說明理由;
(2)當∠ABC與∠DCB滿足什么關系時,四邊形EGFH為正方形,并說明理由;
(3)猜想:∠GFH、∠ABC、∠DCB三個角之間的關系.直接寫出結果____________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=2,E是AB的中點,直線l平行于直線EC,且直線l與直線EC之間的距離為2,點F在矩形ABCD邊上,將矩形ABCD沿直線EF折疊,使點A恰好落在直線l上,則DF的長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在四邊形ABCD中,AB=AD,BC=CD.
(1)如圖1,請連接AC,BD,求證:AC垂直平分BD;
(2)如圖2,若∠BCD=60°,∠ABC=90°,E,F分別為邊BC,CD上的動點,且∠EAF=60°,AE,AF分別與BD交于G,H,求證:△AGH∽△AFE;
(3)如圖3,在(2)的條件下,若 EF⊥CD,直接寫出 的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,正方形A1B1C1O、A2B2C2B1、A3B3C3B2 , …,按圖所示的方式放置.點A1、A2、A3 , …和點B1、B2、B3 , …分別在直線y=kx+b和x軸上.已知C1(1,﹣1),C2( , ),則點A3的坐標是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,EF分別是 BC,CD上的點,且∠EAF=60°,探究圖中線段BE,EF,FD之間的數量關系.
小王同學探究此問題的方法是延長FD到點G,使DG=BE,連結AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結論,他的結論應是 ;
探索延伸:
(2)如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,E,F分別是BC,CD上的點,且∠EAF=∠BAD,上述結論是否仍然成立,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了進一步改進本校七年級數學教學,提高學生學習數學的興趣,校教務處在七年級所有班級中,每班隨機抽取了6名學生,并對他們的數學學習情況進行了問卷調查.我們從所調查的題目中,特別把學生對數學學習喜歡程度的回答(喜歡程度分為:“A﹣非常喜歡”、“B﹣比較喜歡”、“C﹣不太喜歡”、“D﹣很不喜歡”,針對這個題目,問卷時要求每位被調查的學生必須從中選一項且只能選一項)結果進行了統(tǒng)計,現將統(tǒng)計結果繪制成如下兩幅不完整的統(tǒng)計圖.
請你根據以上提供的信息,解答下列問題:
(1)補全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;
(2)所抽取學生對數學學習喜歡程度的眾數是 ;
(3)若該校七年級共有960名學生,請你估算該年級學生中對數學學習“不太喜歡”的有多少人?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com