精英家教網 > 初中數學 > 題目詳情

【題目】2018年底我市新湖一路貫通工程圓滿竣工,若要在寬為40米的道路AD兩邊安裝路燈,燈柱AB10米,路燈的燈臂BC與燈柱AB130°角,路燈采用圓錐形燈罩,燈罩的軸線CO與燈臂BC垂直,當燈罩的軸線CO通過公路的中心線時照明效果最好,此時路燈的燈臂BC應為多少米?(結果精確到0.01

(參考數據:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).

【答案】9.02

【解析】

延長CB、OA交于點E,根據銳角三角函數的定義即可求出BECE的長度,然后根據BCCEBE即可求出答案.

解:延長CB、OA交于點E,

∵∠ABC130°

∴∠E40°,

AB10

RtABE中,

sin40°,

BE15.625

∴由勾股定理可知:AE≈12.00,

OA20,

OE12+2032

RtOEC中,

cos40° ,

CE≈24.64

BC≈24.6415.625≈9.02

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長是4,點EAB邊上一動點,連接CE,過點BBGCE于點G,點PAB邊上另一動點,則PD+PG的最小值為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某學校準備購買若干臺A型電腦和B型打印機.如果購買1A型電腦,2B型打印機,一共需要花費5900;如果購買2A型電腦,2B型打印機,一共需要花費9400.

(1)求每臺A型電腦和每臺B型打印機的價格分別是多少元?

(2)如果學校購買A型電腦和B型打印機的預算費用不超過20000,并且購買B型打印機的臺數要比購買A型電腦的臺數多1,那么該學校至多能購買多少臺B型打印機?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】圖中是小明完成的一道作業(yè)題,請你參考小明的解答方法解答下面的問題:

小明的作業(yè)

計算:(-47×0257

解:(-47×0257=-4×0257

=-17

=-1

1)計算①82018×-01252018

2)看2·4n·16n=219 , n的值

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,反比例函數y=﹣在第二象限的圖象上有兩點AB,它們的橫坐標分別為﹣1、﹣2,在直線y=x上求一點P,使PA+PB最。畡tP點坐標為(  )

A. P,B. PC. P1,1D. P,

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,∠A=30°,以點B為圓心,適當長為半徑的畫弧,分別交BA,BC于點MN;再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,作射線BPAC于點D,則下列說法中不正確的是()

A. BP是∠ABC的平分線B. AD=BDC. D. CD=BD

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB3BC,以點A為圓心,AD為半徑畫弧交AB于點E連接CE,作線段CE的中垂線交AB于點F,連接CF,則sinCFB_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A點的坐標為(a,6),ABx軸于點B=,反比例函數y=的圖象的一支分別交AO、AB于點C、D.延長AO交反比例函數的圖象的另一支于點E.已知點D的縱坐標為

1)求反比例函數的解析式及點E的坐標;

2)連接BC,求SCEB

3)若在x軸上的有兩點Mm,0N-m,0).

①以E、MC、N為頂點的四邊形能否為矩形?如果能求出m的值,如果不能說明理由.

②若將直線OAO點旋轉,仍與y=交于C、E,能否構成以E、M、CN為頂點的四邊形為菱形,如果能求出m的值,如果不能說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場購進甲、乙兩種商品,甲種商品共用了2000元,乙種商品共用了2400已知乙種商品每件進價比甲種商品每件進價多8元,且購進的甲、乙兩種商品件數相同.

求甲、乙兩種商品的每件進價;

該商場將購進的甲、乙兩種商品進行銷售,甲種商品的銷售單價為60元,乙種商品的銷售單價為88元,銷售過程中發(fā)現甲種商品銷量不好,商場決定:甲種商品銷售一定數量后,將剩余的甲種商品按原銷售單價的七折銷售;乙種商品銷售單價保持不變要使兩種商品全部售完后共獲利不少于2460元,問甲種商品按原銷售單價至少銷售多少件?

查看答案和解析>>

同步練習冊答案