【題目】如圖,在矩形ABCD中,AB=3BC,以點A為圓心,AD為半徑畫弧交AB于點E連接CE,作線段CE的中垂線交AB于點F,連接CF,則sin∠CFB=_____.
【答案】
【解析】
設(shè)BF=x,AD=BC=a,則AB=3BC=3a,AE=AD=a,則BE=AB﹣AE=3a﹣a=2a,因為CE的中垂線交AB于點F,所以EF=FC=2a﹣x,在Rt△CBF中,BF2+BC2=CF2,即x2+a2=(2a﹣x)2,x=,所以BF= ,CF=2a﹣,然后求解即可.
設(shè)BF=x,AD=BC=a,則AB=3BC=3a,AE=AD=a,
∴BE=AB﹣AE=3a﹣a=2a,
∵CE的中垂線交AB于點F,
∴EF=FC=2a﹣x,
在Rt△CBF中,
BF2+BC2=CF2,
即x2+a2=(2a﹣x)2,
x=,
∴BF=,CF=2a﹣=,
,
故答案為 .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,航拍無人機從A處測得一幢建筑物頂部B的仰角為45°,側(cè)得底部C的俯角為60°,此時航拍無人機與該建筑物的水平距離AD為90米,那么該建筑物的高度BC為( )
A. 90+30B. 90+60C. 90+90D. 90+180
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=mx+2mx-3m(m≠0)的頂點為H,與軸交于A、B兩點(B點在A點右側(cè)),點H、B關(guān)于直線l:對稱,過點B作直線BK∥AH交直線l于K點.
(1)求A、B兩點坐標(biāo),并證明點A在直線I上。
(2)求此拋物線的解析式;
(3)將此拋物線向上平移,當(dāng)拋物線經(jīng)過K點時,設(shè)頂點為N,求出NK的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年底我市新湖一路貫通工程圓滿竣工,若要在寬為40米的道路AD兩邊安裝路燈,燈柱AB高10米,路燈的燈臂BC與燈柱AB成130°角,路燈采用圓錐形燈罩,燈罩的軸線CO與燈臂BC垂直,當(dāng)燈罩的軸線CO通過公路的中心線時照明效果最好,此時路燈的燈臂BC應(yīng)為多少米?(結(jié)果精確到0.01)
(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店以每千克8元的價格收購蘋果若干千克,銷售了部分蘋果后,余下的蘋果以每千克降價4元銷售,全部售完。銷售金額y(元)與銷售量x(千克)之間的關(guān)系如圖所示。請根據(jù)圖象提供的信息完成下列問題:
(1)降價前蘋果的銷售單價是 元/千克;
(2)求降價后銷售金額y(元)與銷售量x千克之間的函數(shù)解析式,并寫出自變量的取值范圍;
(3)該水果店這次銷售蘋果盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)△ABC和△CDE是兩個等腰直角三角形,如圖1,其中∠ACB=∠DCE=90°,連結(jié)AD、BE,求證:△ACD≌△BCE.
(2)△ABC和△CDE是兩個含30°的直角三角形,其中∠ACB=∠DCE=90°,∠CAB=∠CDE=30°,CD<AC,△CDE從邊CD與AC重合開始繞點C逆時針旋轉(zhuǎn)一定角度α(0°<α<180°);
①如圖2,DE與BC交于點F,與AB交于點G,連結(jié)AD,若四邊形ADEC為平行四邊形,求的值;
②若AB=10,DE=8,連結(jié)BD、BE,當(dāng)以點B、D、E為頂點的三角形是直角三角形時,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=AC,∠ABC=72°,以B為圓心,以任意長為半徑畫弧,分別交BA、BC于M、N,再分別以M、N為圓心,以大于MN為半徑畫弧,兩弧交于點P,射線BP交AC于點D,則圖中與BC相等的線段有( 。
A. BDB. CDC. BD和ADD. CD和AD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】東北大米主要種植于黑龍江省、吉林省、遼寧省的廣大平原地區(qū),種植在極其肥沃的黑土地中,吸收了足夠的氮、磷、鉀等多種礦物元素,陽光雨露充足,又有純凈無污染的灌溉用水,生長周期比較長,一般五個月左右.東北大米顆粒飽滿,質(zhì)地堅硬,色澤清白透明;飯粒油亮,香味濃郁;蒸煮后出飯率高,粘性較小,米質(zhì)較脆.劉阿姨到超市購買東北大米,第一次按原價購買,用了105元.幾天后,遇上這種大米8折出售,她用140元又買了一些,兩次共購買了40kg.這種東北大米的原價是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.
(1)判斷四邊形ACDF的形狀;
(2)當(dāng)BC=2CD時,求證:CF平分∠BCD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com