【題目】(1)整式加減
①6a2b+5ab2﹣4ab2﹣7a2b
②5a2b﹣[2a2b﹣(ab2﹣2a2b)﹣4]﹣2ab2
(2)先化簡,再求值
①5a2+3b2+2(a2﹣b2)﹣(52﹣3b2),其中a=﹣1,b=.
②2(xy2+xy)﹣3(xy2﹣yx)﹣4yx2,其中|x+1|+(y﹣1)2=0
【答案】(1)①﹣a2b+ab2;②a2b﹣ab2+4;(2)①7a2+4b2﹣25,-17;②﹣xy2﹣4x2y+5xy,-8.
【解析】
(1)①原式合并同類項即可;
②原式先去括號然后合并即可得到結(jié)果;
(2)①原式先去括號然后合并同類項得到最簡結(jié)果,把a與b的值代入計算即可求出值;
②原式先去括號然后合并同類項得到最簡結(jié)果,利用非負(fù)數(shù)的性質(zhì)求出x與y的值,代入計算即可求出值.
解:(1)①原式=﹣a2b+ab2;
②原式=5a2b﹣2a2b+ab2﹣2a2b+4﹣2ab2=a2b﹣ab2+4;
(2)①原式=5a2+3b2+2a2﹣2b2﹣52+3b2=7a2+4b2﹣25,
當(dāng)a=﹣1,b=時,原式=7+1﹣25=﹣17;
②原式=2xy2+2xy﹣3xy2+3xy﹣4x2y=﹣xy2﹣4x2y+5xy,
由|x+1|+(y﹣1)2=0,得到x=﹣1,y=1,
則原式=1﹣4﹣5=﹣8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)珠海環(huán)保城市建設(shè),我市某污水處理公司不斷改進(jìn)污水處理設(shè)備,新設(shè)備每小時處理污水量是原系統(tǒng)的1.5倍,原來處理1200m3污水所用的時間比現(xiàn)在多用10小時.
(1)原來每小時處理污水量是多少m2?
(2)若用新設(shè)備處理污水960m3,需要多長時間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝公司招工廣告承諾:熟練工人每月工資至少4000元.每天工作8小時,一個月工作25天.月工資底薪1000元,另加計件工資.加工1件A型服裝計酬20元,加工1件B型服裝計酬15元.在工作中發(fā)現(xiàn)一名熟練工加工2件A型服裝和3件B型服裝需7小時,加工1件A型服裝和2件B型服裝需4小時.(工人月工資=底薪+計件工資)
(1)一名熟練工加工1件A型服裝和1件B型服裝各需要多少小時?
(2)一段時間后,公司規(guī)定:“每名工人每月必須加工A,B兩種型號的服裝,且加工A型服裝數(shù)量不少于B型服裝的一半”.設(shè)一名熟練工人每月加工A型服裝a件,工資總額為W元.請你運用所學(xué)知識判斷該公司在執(zhí)行規(guī)定后是否違背了廣告承諾?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(﹣1,0),對稱軸為直線x=2,下列結(jié)論
①abc>0;
②4a+b=0;
③9a+c>3b;
④當(dāng)x>﹣1時,y的值隨x值的增大而增大,其中正確的結(jié)論有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有理數(shù)運算:
(1)﹣13+28+62﹣77
(2)4﹣4+(﹣3)×(﹣)
(3)﹣12006+[1﹣(2﹣22)×3]+(﹣1)2016
(4)(﹣6)×(﹣)×(﹣8)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在的正方形網(wǎng)格中,每個小正方形的邊長均為,每個小正方形的頂點叫做格點.的頂點都在格點上.按照要求完成下列畫圖(只在此的網(wǎng)格中完成且所畫各點都是格點,所畫的點可以與已知點重合).
(1)將繞點逆時針旋轉(zhuǎn),得到;
(2)畫出所有點,使得以,,,為頂點的四邊形是平行四邊形;
(3)畫出一個與相似(但不全等)的三角形,且與有公共點(畫出一個三角形即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點P的坐標(biāo)為(x1,y1),點Q的坐標(biāo)為(x2,y2),且x1≠x2,y1≠y2.若P,Q為某個矩形的兩個頂點,且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為點P,Q的“相關(guān)矩形”,下圖①為點P,Q的“相關(guān)矩形”的示意圖.
已知點A的坐標(biāo)為(1,0),
(1)若點B的坐標(biāo)為(3,1),求點A,B的“相關(guān)矩形”的面積;
(2)點C在直線x=3上,若點A,C的“相關(guān)矩形”為正方形,求直線AC的表達(dá)式;
(3)若點D的坐標(biāo)為(4,2),將直線y=2x+b平移,當(dāng)它與點A,D的“相關(guān)矩形”沒有公共點時,求出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的邊OA=6,OC=2,一條動直線l分別與BC、OA將于點E、F,且將矩形OABC分為面積相等的兩部分,則點O到動直線l的距離的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于每個正整數(shù) n,關(guān)于 x 的一元二次方程 0 的兩個根分別為 an、bn,設(shè)平面直角坐標(biāo)系中,An、Bn 兩點的坐標(biāo)分別為 An(an,0),Bn(bn,0),AnBn 表示這兩點間的距離,則 AnBn=____________(用含 n 的代數(shù)式表示);A1B1+ A2B2+ …+ A2011B2012 的值為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com