【題目】將正方形ABCD繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)30°,得正方形AB1C1D1,B1C1交CD于點(diǎn)E,AB=,則四邊形AB1ED的內(nèi)切圓半徑為_________
【答案】
【解析】
首先作∠DAF與∠AB1C1的角平分線,交于點(diǎn)O,則O為該圓的圓心,過(guò)O作OF⊥AB1交AB1于點(diǎn)F,則OF即為所求,根據(jù)角平分線的性質(zhì)可得∠OAF=30°,∠AB1O=45°,根據(jù)等腰三角形的性質(zhì)以及含30°角的直角三角形性質(zhì)可得B1F=x,AF=-x,接下來(lái)在Rt△OFA,利用勾股定理即可得到關(guān)于x的方程,解方程即可求解.
作∠DAF與∠AB1C1的角平分線,交于點(diǎn)O,過(guò)O作OF⊥AB1交AB1于點(diǎn)F,
AB=AB1=,∠BAB1=30°,
∵四邊形AB1C1D1是正方形,∠DAF與∠AB1C1的角平分線交于點(diǎn)O,∠BAB1=30°
∴∠OAF=30°,∠AB1O=45°
∵OF⊥AB1
∴B1F=OF=OA
設(shè)B1F=x,則AF=-x
∴(-x)2+x2=(2x)2
解得x=或x=(舍去)
即四邊AB1ED的內(nèi)切圓的半徑為.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】鳳城中學(xué)九年級(jí)(3)班的班主任讓同學(xué)們?yōu)榘鄷?huì)活動(dòng)設(shè)計(jì)一個(gè)摸球方案,這些球除顏色外都相同,擬使中獎(jiǎng)概率為50%.
(1)小明的設(shè)計(jì)方案:在一個(gè)不透明的盒子中,放入黃、白兩種顏色的球共6個(gè),攪勻后從中任意摸出1個(gè)球,摸到黃球則表示中獎(jiǎng),否則不中獎(jiǎng).如果小明的設(shè)計(jì)符合老師要求,則盒子中黃球應(yīng)有 個(gè),白球應(yīng)有 個(gè);
(2)小兵的設(shè)計(jì)方案:在一個(gè)不透明的盒子中,放入2個(gè)黃球和1個(gè)白球,攪勻后從中任意摸出2個(gè)球,摸到的2個(gè)球都是黃球則表示中獎(jiǎng),否則不中獎(jiǎng),該設(shè)計(jì)方案是否符合老師的要求?試說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù) y=﹣x+4 的圖象與反比例 y=(k 為常數(shù), 且 k≠0)的圖象交于 A(1,a)、B(b,1)兩點(diǎn).
(1)求點(diǎn) A、B 的坐標(biāo)及反比例函數(shù)的表達(dá)式;
(2)在 x 軸上找一點(diǎn),使 PA+PB 的值最小,求滿足條件的點(diǎn) P 的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的是二次函數(shù)(為常數(shù),且)的圖象,其對(duì)稱軸為直線,且經(jīng)過(guò)點(diǎn)(0,1),則下列結(jié)論錯(cuò)誤的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是邊長(zhǎng)為1的正方形ABCD的對(duì)角線AC上一動(dòng)點(diǎn)(不與A、C兩點(diǎn)重合),連接BP,過(guò)點(diǎn)P作PE⊥PB交直線CD于點(diǎn)E,連接BE,MN//BC分別交AB、DC于點(diǎn)M、N.設(shè).
(1)當(dāng)點(diǎn)E在CD邊上時(shí),線段PE于線段PB有怎樣的數(shù)量關(guān)系?試證明你的結(jié)論.
(2)設(shè)以點(diǎn)B,C,P,E為頂點(diǎn)的四邊形的面積為y,試確定y與x之間的函數(shù)關(guān)系式,并求出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,⊙O是△ABC的內(nèi)切圓,它與AB,BC,CA分別相切于點(diǎn)D,E,F.
(1)求證:BE=CE;
(2)若∠A=90°,AB=AC=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=k1x+b(k1≠0)與雙曲線(k2≠0)相交于A(1,2)、B(m,﹣1)兩點(diǎn).
(1)求直線和雙曲線的解析式;
(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)為雙曲線上的三點(diǎn),且x1<0<x2<x3,請(qǐng)直接寫(xiě)出y1,y2,y3的大小關(guān)系式;
(3)觀察圖象,請(qǐng)直接寫(xiě)出不等式k1x+b<的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)長(zhǎng)為4cm,寬為3cm的長(zhǎng)方形木板在桌面上做無(wú)滑動(dòng)的翻滾(順時(shí)針?lè)较颍,木板點(diǎn)A位置的變化為A→Al→A2,其中第二次翻滾被面上一小木塊擋住,使木板與桌面成30°的角,則點(diǎn)A滾到A2位置時(shí)共走過(guò)的路徑長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了提高學(xué)生學(xué)科能力,決定開(kāi)設(shè)以下校本課程:A.文學(xué)院,B.小小數(shù)學(xué)家,C.小小外交家,D.未來(lái)科學(xué)家,為了解學(xué)生最喜歡哪一項(xiàng)校本課程,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問(wèn)題:
(1)這次被調(diào)查的學(xué)生共有 人;
(2)請(qǐng)你將條形統(tǒng)計(jì)圖(2)補(bǔ)充完整;
(3)在平時(shí)的小小外交家的課堂學(xué)習(xí)中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加全國(guó)英語(yǔ)口語(yǔ)大賽,求恰好同時(shí)選中甲、乙兩位同學(xué)的概率(用樹(shù)狀圖或列表法解答).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com