【題目】如圖1,在Rt△ABC中,∠ACB=90°,點D是邊AB的中點,點E在邊BC上,AE=BE,點M是AE的中點,聯(lián)結(jié)CM,點G在線段CM上,作∠GDN=∠AEB交邊BC于N.
(1)如圖2,當點G和點M重合時,求證:四邊形DMEN是菱形;
(2)如圖1,當點G和點M、C不重合時,求證:DG=DN.
【答案】(1)見解析;(2)見解析
【解析】
本題主要考查菱形及全等三角形的應用
(1)先由MD為BE的中位線,可證MD∥EN且MD=BE,又∠GDN+∠DNE=180°,可證四邊形MDNE為平行四邊形,從而可證平行四邊形DMEN為菱形
(2)取BE中點F,連接DM,DF,利用(1)的結(jié)論可證△DMG≌△DFN,即可得出答案
證明:(1)如圖2中,
∵AM=ME.AD=DB,
∴DM∥BE,
∴∠GDN+∠DNE=180°,
∵∠GDN=∠AEB,
∴∠AEB+∠DNE=180°,
∴AE∥DN,
∴四邊形DMEN是平行四邊形,
∵,
∴DM=EM,
∴四邊形DMEN是菱形.
(2)如圖1中,取BE的中點F,連接DM、DF.
由(1)可知四邊形EMDF是菱形,
∴∠AEB=∠MDF,DM=DF,
∴∠GDN=∠AEB,
∴∠MDF=∠GDN,
∴∠MDG=∠FDN,
∵∠DFN=∠AEB=∠MCE+∠CME,∠GMD=∠EMD+∠CME,、
在Rt△ACE中,∵AM=ME,
∴CM=ME,
∴∠MCE=∠CEM=∠EMD,
∴∠DMG=∠DFN,
∴△DMG≌△DFN,
∴DG=DN.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠BAD=130°,∠B=∠D=90°,點E,F分別是線段BC,DC上的動點.當△AEF的周長最小時,則∠EAF的度數(shù)為( 。
A. 90°B. 80°C. 70°D. 60°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,所有正方形的中心均在坐標原點,且各邊與x軸或y軸平行,從內(nèi)到外,它們的邊長依次為2,4,6,8 …,頂點依次為A1,A2,A3,A4,A5,…,則頂點A55的坐標是( )
A. (13,13) B. (-13,-13) C. (-14,-14) D. (14,14)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩工程隊承包一項工程,如果甲工程隊單獨施工,恰好如期完成;如果乙工程隊單獨施工就要超過6個月才能完成,現(xiàn)在甲、乙兩隊先共同施工4個月,剩下的由乙隊單獨施工,則恰好如期完成.
(1)問原來規(guī)定修好這條公路需多少長時間?
(2)現(xiàn)要求甲、乙兩個工程隊都參加這項工程,但由于受到施工場地條件限制,甲、乙兩工程隊不能同時施工.已知甲工程隊每月的施工費用為4萬元,乙工程隊每月的施工費用為2萬元.為了結(jié)算方便,要求:甲、乙的施工時間為整數(shù)個月,不超過15個月完成.當施工費用最低時,甲、乙各施工了多少個月?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在圓心角為135°的扇形OAB中,半徑OA=2cm,點C,D為 的三等分點,連接OC,OD,AC,CD,BD,則圖中陰影部分的面積為cm2 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,任意一個正整數(shù)n都可以進行這樣的分解:n=p×q(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱p×q是n的最佳分解.并規(guī)定:F(n)= . 例如12可以分解成1×12,2×6或3×4,因為12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)= .
(Ⅰ)如果一個正整數(shù)m是另外一個正整數(shù)n的平方,我們稱正整數(shù)m是完全平方數(shù).
求證:對任意一個完全平方數(shù)m,總有F(m)=1;
(Ⅱ)如果一個兩位正整數(shù)t,t=10x+y(1≤x≤y≤9,x,y為自然數(shù)),交換其個位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為36,那么我們稱這個數(shù)t為“吉祥數(shù)”,求所有“吉祥數(shù)”;
(Ⅲ)在(2)所得“吉祥數(shù)”中,求F(t)的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC的邊長是2,D、E分別為AB、AC的中點,延長BC至點F,使CF=BC,連接CD和EF.
(1)求證:DE=CF;
(2)求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC在平面直角坐標系中的位置如圖所示.將△ABC向右平移6個單位長度,再向下平移6個單位長度得到△A1B1C1.(圖中每個小方格邊長均為1個單位長度) .
(1)在圖中畫出平移后的△A1B1C1;
(2)直接寫出△A1B1C1各頂點的坐標.
; ; ;
(3)求出△ABC的面積
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com