【題目】在Rt△ABC中,∠ACB=90°,∠A=30°,點DAB的中點,DE⊥BC,垂足為點E,連接CD

1)如圖1,DEBC的數(shù)量關系是   

2)如圖2,若P是線段CB上一動點(點P不與點B、C重合),連接DP,將線段DP繞點D逆時針旋轉60°,得到線段DF,連接BF,請猜想DE、BF、BP三者之間的數(shù)量關系,并證明你的結論;

3)若點P是線段CB延長線上一動點,按照(2)中的作法,請在圖3中補全圖形,并直接寫出DE、BFBP三者之間的數(shù)量關系.

【答案】解:(1DE=BC。

2)根據(jù)旋轉的性質得到∠PDF=60°,DP=DF,易得∠CDP=∠BDF,根據(jù)“SAS”可判斷△DCP≌△DBF,則CP=BF,利用CP=BC﹣BPDE=BC可得到BF+BP=DE;

3)補全圖形如圖,DE、BF、BP三者之間的數(shù)量關系為BF﹣BP=DE

【解析】試題分析:(1)由∠ACB=90°,∠A=30°得到∠B=60°,根據(jù)直角三角形斜邊上中線性質得到DB=DC,則可判斷△DCB為等邊三角形,由于DE⊥BC,DE=BC

2)根據(jù)旋轉的性質得到∠PDF=60°,DP=DF,易得∠CDP=∠BDF,則可根據(jù)“SAS”可判斷△DCP≌△DBF,則CP=BF,利用CP=BC﹣BP,DE=BC可得到BF+BP=DE;

3)與(2)的證明方法一樣得到△DCP≌△DBF得到CP=BF,而CP=BC+BP,則BF﹣BP=BC,所以BF﹣BP=DE

解:(1∵∠ACB=90°,∠A=30°

∴∠B=60°,

DAB的中點,

∴DB=DC,

∴△DCB為等邊三角形,

∵DE⊥BC,

∴DE=BC;

故答案為DE=BC

2BF+BP=DE.理由如下:

線段DP繞點D逆時針旋轉60°,得到線段DF,

∴∠PDF=60°,DP=DF,

∠CDB=60°,

∴∠CDB﹣∠PDB=∠PDF﹣∠PDB

∴∠CDP=∠BDF,

△DCP△DBF

∴△DCP≌△DBFSAS),

∴CP=BF

CP=BC﹣BP,

∴BF+BP=BC

∵DE=BC,

∴BC=DE

∴BF+BP=DE;

3)如圖,

與(2)一樣可證明△DCP≌△DBF,

∴CP=BF

CP=BC+BP,

∴BF﹣BP=BC,

∴BF﹣BP=DE

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點分別在等邊三角形的邊,上,,,連接交于點,連接,以下結論:①;②;③的面積是面積的2倍;④;一定正確的有( )個.

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中菱形ABOC的頂點O在坐標原點,BOx軸的負半軸上,∠BOC=60°,頂點C的坐標為m,),反比例函數(shù)的圖像與菱形對角線AO交于D連接BD,BDx軸時,k的值是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】射線QN與等邊ABC的兩邊AB,BC分別交于點MN,且ACQNAM=MB=2cm,QM=4cm.動點P從點Q出發(fā),沿射線QN以每秒1cm的速度向右移動,經(jīng)過t秒,以點P為圓心,cm為半徑的圓與ABC的邊相切(切點在邊上),請寫出t可取的一切值 (單位:秒)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①②,A是半徑為12cm的☉O上的定點,動點PA出發(fā),2π(cm/s)的速度沿圓周逆時針運動,當點P回到A時立即停止運動.

(1)如圖①,BOA延長線上一點,AB=OA,當點P運動時間為2s,試證明直線BP是☉O的切線.

(2)如圖②,當∠POA=90°,求點P的運動時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩個工程隊共同完成一項工程,乙隊先單獨做1天后,再由兩隊合作2天就完成了全部工程.已知甲隊單獨完成工程所需的天數(shù)是乙隊單獨完成所需天數(shù)的,求甲、乙兩隊單獨完成各需多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O(0,0),A(0,1)是正方形的兩個頂點,以對角線為邊作正方形,再以正方形的對角線作正方形,…,依此規(guī)律,則點的坐標是( )

A. (-8,0) B. (0,8)

C. (0,8 D. (0,16)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°, AD∠BAC的平分線,OAB上一點, OA為半徑的⊙O經(jīng)過點D

1)求證:BC⊙O切線;

2)若BD=5,DC=3,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商家銷售一款商品,進價每件80元,售價每件145元,每天銷售40件,每銷售一件需支付給商場管理費5元,未來一個月30天計算,這款商品將開展每天降價1的促銷活動,即從第一天開始每天的單價均比前一天降低1元,通過市場調查發(fā)現(xiàn),該商品單價每降1元,每天銷售量增加2件,設第xx為整數(shù)的銷售量為y件.

直接寫出yx的函數(shù)關系式;

設第x天的利潤為w元,試求出wx之間的函數(shù)關系式,并求出哪一天的利潤最大?最大利潤是多少元?

查看答案和解析>>

同步練習冊答案