【題目】如圖,已知正方形ABCD,頂點A(1,3)、B(1,1)、C(3,1).規(guī)定“把正方形ABCD先沿x軸翻折,再向左平移一個單位”為一次變換.如此這樣,連續(xù)經過2018次變換后,正方形ABCD的對角線交點M的坐標為_____.
【答案】(﹣2016,2).
【解析】
由正方形ABCD,頂點A(1,3)、B(1,1)、C(3,1),然后根據題意求得第1次、2次、3次變換后的點M的對應點的坐標,即可得規(guī)律:第n次變換后的點M的對應點的為:當n為奇數時為(2﹣n,﹣2),當n為偶數時為(2﹣n,2),繼而求得把正方形ABCD連續(xù)經過2018次這樣的變換得到點M的坐標.
∵正方形ABCD,頂點A(1,3)、B(1,1)、C(3,1).
∴點M的坐標為(2,2),
根據題意得:第1次變換后的點M的對應點的坐標為(2﹣1,﹣2),即(1,﹣2),
第2次變換后的點M的對應點的坐標為:(2﹣2,2),即(0,2),
第3次變換后的點M的對應點的坐標為(2﹣3,﹣2),即(﹣1,﹣2),
第n次變換后的點M的對應點的為:當n為奇數時為(2﹣n,﹣2),當n為偶數時為(2﹣n,2),
∴連續(xù)經過2018次變換后,點M的坐標變?yōu)椋ī?/span>2016,2).
故答案是:(﹣2016,2).
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖:第一步,分別以點A、D為圓心,以大于的長為半徑在AD的兩側作弧,交于兩點M、N;第二步,連結MN,分別交AB、AC于點E、F;第三步,連結DE、DF..若BD=6,AF=4,CD=3,則BE的長是( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,,以為直徑的交于點,交于點,點是的延長線上一點,且∠PDB=∠A,連接,.
(1)求證:是的切線.
(2)填空:
①當的度數為______時,四邊形是菱形;
②當時,的面積為_________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】濟南市某中學對部分學生就食品安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調查的學生共有_____人,扇形統(tǒng)計圍中“基本了解”部分所對應扇形的圓心角為______°;
(2)請補全條形統(tǒng)計圖;
(3)若該中學共有學生900人,請根據上述調查結果,估計該中學學生中對食品安全知識達到“了解”和“基本了解”程度的總人數;
(4)從對食品安全知識達到“了解”的3個女生和2個男生中隨機抽取2人參加食品安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系中,已知點的坐標為.
(1)請用直尺(不帶刻度)和圓規(guī)作一條直線,它與軸和軸的正半軸分別交于點和點,且與關于直線對稱.(作圖不必寫作法,但要保留作圖痕跡.)
(2)請求出(1)中作出的直線的函數表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為一斜坡,其坡角為19.5°,緊挨著斜坡AB底部A處有一高樓,一數學活動小組量得斜坡長AB=15m,在坡頂B處測得樓頂D處的仰角為45°,其中測量員小剛的身高BC=1.7米,求樓高AD.(參考數據:sin19.5°≈,tan19.5°≈ ,最終結果精確到0.1m).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】丁老師為了解所任教的兩個班的學生數學學習情況,對數學進行了一次測試,獲得了兩個班的成績(百分制),并對數據(成績)進行整理、描述和分析,下面給出了部分信息.
①A、B兩班學生(兩個班的人數相同)數學成績不完整的頻數分布直方圖如下(數據分成5組:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):
②A、B兩班學生測試成績在80≤x<90這一組的數據如下:
A班:80 80 82 83 85 85 86 87 87 87 88 89 89
B班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89
③A、B兩班學生測試成績的平均數、中位數、方差如下:
平均數 | 中位數 | 方差 | |
A班 | 80.6 | m | 96.9 |
B班 | 80.8 | n | 153.3 |
根據以上信息,回答下列問題:
(1)補全數學成績頻數分布直方圖;
(2)寫出表中m、n的值;
(3)請你對比分析A、B兩班學生的數學學習情況(至少從兩個不同的角度分析).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC內部,且AD=CD,∠ADC=90°,連接BD,若△BCD的面積為10,則AD的長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,正三角形和正方形內接于同一個圓;如圖②,正方形和正五邊形內接于同一個圓;如圖③,正五邊形和正六邊形內接于同一個圓;…;則對于圖①來說,BD可以看作是正_____邊形的邊長;若正n邊形和正(n+1)邊形內接于同一個圓,連接與公共頂點相鄰同側兩個不同正多邊形的頂點可以看做是_____邊形的邊長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com