【題目】如圖,在平面直角坐標(biāo)系中,A(﹣3,0),點(diǎn) B是 y軸正半軸上一動(dòng)點(diǎn),點(diǎn)C、D在 x正半軸上.
(1)如圖,若∠BAO=60°,∠BCO=40°,BD、CE 是△ABC的兩條角平分線,且BD、CE交于點(diǎn)F,直接寫出CF的長(zhǎng)_____.
(2)如圖,△ABD是等邊三角形,以線段BC為邊在第一象限內(nèi)作等邊△BCQ,連接 QD并延長(zhǎng),交 y軸于點(diǎn) P,當(dāng)點(diǎn) C運(yùn)動(dòng)到什么位置時(shí),滿足 PD=DC?請(qǐng)求出點(diǎn)C的坐標(biāo);
(3)如圖,以AB為邊在AB的下方作等邊△ABP,點(diǎn)B在 y軸上運(yùn)動(dòng)時(shí),求OP的最小值.
【答案】(1)6;(2)C的坐標(biāo)為(12,0);(3).
【解析】
(1)作∠DCH=10°,CH 交 BD 的延長(zhǎng)線于 H,分別證明△OBD≌△HCD 和△AOB≌△FHC,根據(jù)全等三角形的對(duì)應(yīng)邊相等解答;
(2)證明△CBA≌△QBD,根據(jù)全等三角形的性質(zhì)得到∠BDQ=∠BAC=60°,求出 CD,得到答案;
(3)以 OA 為對(duì)稱軸作等邊△ADE,連接 EP,并延長(zhǎng) EP 交 x 軸于點(diǎn) F.證明點(diǎn) P 在直線 EF 上運(yùn)動(dòng),根據(jù)垂線段最短解答.
解:(1)作∠DCH=10°,CH 交 BD 的延長(zhǎng)線于 H,
∵∠BAO=60°,
∴∠ABO=30°,
∴AB=2OA=6,
∵∠BAO=60°,∠BCO=40°,
∴∠ABC=180°﹣60°﹣40°=80°,
∵BD 是△ABC 的角平分線,
∴∠ABD=∠CBD=40°,
∴∠CBD=∠DCB,∠OBD=40°﹣30°=10°,
∴DB=DC,
在△OBD 和△HCD 中,
∴△OBD≌△HCD(ASA),
∴OB=HC,
在△AOB 和△FHC 中,
∴△AOB≌△FHC(ASA),
∴CF=AB=6,
故答案為6;
(2)∵△ABD 和△BCQ 是等邊三角形,
∴∠ABD=∠CBQ=60°,
∴∠ABC=∠DBQ,
在△CBA 和△QBD 中,
∴△CBA≌△QBD(SAS),
∴∠BDQ=∠BAC=60°,
∴∠PDO=60°,
∴PD=2DO=6,
∵PD=DC,
∴DC=9,即 OC=OD+CD=12,
∴點(diǎn) C的坐標(biāo)為(12,0);
(3)如圖3,以 OA為對(duì)稱軸作等邊△ADE,連接 EP,并延長(zhǎng) EP交 x 軸于點(diǎn)F.
由(2)得,△AEP≌△ADB,
∴∠AEP=∠ADB=120°,
∴∠OEF=60°,
∴OF=OA=3,
∴點(diǎn)P在直線 EF上運(yùn)動(dòng),當(dāng) OP⊥EF時(shí),OP最小,
∴OP=OF=
則OP的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(6,0),B(8,5),將線段OA平移至CB,點(diǎn)D在x軸正半軸上(不與點(diǎn)A重合),連接OC,AB,CD,BD.
(1)求對(duì)角線AC的長(zhǎng);
(2)設(shè)點(diǎn)D的坐標(biāo)為(x,0),△ODC與△ABD的面積分別記為S1,S2.設(shè)S=S1﹣S2,寫出S關(guān)于x的函數(shù)解析式,并探究是否存在點(diǎn)D使S與△DBC的面積相等?如果存在,用坐標(biāo)形式寫出點(diǎn)D的位置;如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一艘游輪在A處測(cè)得北偏東45°的方向上有一燈塔B.游輪以20海里/時(shí)的速度向正東方向航行2小時(shí)到達(dá)C處,此時(shí)測(cè)得燈塔B在C處北偏東15°的方向上,求A處與燈塔B相距多少海里?(結(jié)果精確到1海里,參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下表三行數(shù)的規(guī)律,回答下列問(wèn)題:
(1)第1行的第四個(gè)數(shù)a是多少;第3行的第六個(gè)數(shù)b是多少;
(2)若第1行的某一列的數(shù)為c,則第2行與它同一列的數(shù)為多少;
(3)巳知第n列的三個(gè)數(shù)的和為2562,若設(shè)第1行第n列的數(shù)為x,試求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在圓心角為 的扇形 中,半徑 =4cm, 為弧 的中點(diǎn),, 分別是 , 的中點(diǎn),則圖中陰影部分的面積(單位)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校想了解學(xué)生每周的課外閱讀時(shí)間情況,隨機(jī)調(diào)查了部分學(xué)生,對(duì)學(xué)生每周的課外閱讀時(shí)間x(單位:小時(shí))進(jìn)行分組整理,并繪制了如圖所示的不完整的頻數(shù)分別直方圖和扇形統(tǒng)計(jì)圖:
根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)補(bǔ)全頻數(shù)分布直方圖
(2)求扇形統(tǒng)計(jì)圖中m的值和E組對(duì)應(yīng)的圓心角度數(shù)
(3)請(qǐng)估計(jì)該校3000名學(xué)生中每周的課外閱讀時(shí)間不小于6小時(shí)的人數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的半徑為5,弦AB⊥CD于E,AB=CD=8.
(1)求證:AC=BD;
(2)若OF⊥CD于F,OG⊥AB于G,試說(shuō)明四邊形OFEG是正方形;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分線BE交AC的延長(zhǎng)線于點(diǎn)E.
(1)求∠CBE的度數(shù);
(2)過(guò)點(diǎn)D作DF∥BE,交AC的延長(zhǎng)線于點(diǎn)F,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是△ABC的高線,CE是△ABC的角平分線,它們相交于點(diǎn)P.
(1)若∠B=40°,∠AEC=75°,求證:AB=BC;
(2)若∠BAC=90°,AP為△AEC邊EC上中線,求∠B的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com