【題目】已知,點P是直角三角形ABC斜邊AB上一動點(不與A,B重合),分別過A,B向直線CP作垂線,垂足分別為E,F(xiàn),Q為斜邊AB的中點.
(1)如圖1,當點P與點Q重合時,AE與BF的位置關系是 ,QE與QF的數(shù)量關系式 ;
(2)如圖2,當點P在線段AB上不與點Q重合時,試判斷QE與QF的數(shù)量關系,并給予證明;
(3)如圖3,當點P在線段BA(或AB)的延長線上時,此時(2)中的結論是否成立?請畫出圖形并給予證明.
【答案】(1)、AE∥BF;QE=QF;(2)、QE=QF;證明過程見解析;(3)、成立;理由見解析.
【解析】
試題分析:(1)、證△BFQ≌△AEQ即可;(2)、證△FBQ≌△DAQ,推出QF=QD,根據(jù)直角三角形斜邊上中線性質求出即可;(3)、證△AEQ≌△BDQ,推出DQ=QE,根據(jù)直角三角形斜邊上中線性質求出即可.
試題解析:(1)、AE∥BF,QE=QF, 理由是:如圖1,∵Q為AB中點, ∴AQ=BQ,
∵BF⊥CP,AE⊥CP, ∴BF∥AE,∠BFQ=∠AEQ=90°, 在△BFQ和△AEQ中
∴△BFQ≌△AEQ(AAS), ∴QE=QF,
(2)、QE=QF, 如圖2,延長FQ交AE于D, ∵Q為AB中點, ∴AQ=BQ,
∵BF⊥CP,AE⊥CP, ∴BF∥AE, ∴∠QAD=∠FBQ, 在△FBQ和△DAQ中
∴△FBQ≌△DAQ(ASA), ∴QF=QD, ∵AE⊥CP,
∴EQ是直角三角形DEF斜邊上的中線, ∴QE=QF=QD, 即QE=QF.
(3)、(2)中的結論仍然成立, 如圖3, 延長EQ、FB交于D, ∵Q為AB中點,
∴AQ=BQ, ∵BF⊥CP,AE⊥CP, ∴BF∥AE, ∴∠1=∠D, 在△AQE和△BQD中,
, ∴△AQE≌△BQD(AAS), ∴QE=QD, ∵BF⊥CP,
∴FQ是斜邊DE上的中線, ∴QE=QF.
科目:初中數(shù)學 來源: 題型:
【題目】某品牌電插座抽樣檢查的合格率為99%,則下列說法總正確的是( 。
A. 購買100個該品牌的電插座,一定有99個合格
B. 購買1000個該品牌的電插座,一定有10個不合格
C. 購買20個該品牌的電插座,一定都合格
D. 即使購買一個該品牌的電插座,也可能不合格
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題中,正確的是( )
A.菱形的對角線相等
B.平行四邊形既是軸對稱圖形,又是中心對稱圖形
C.正方形的對角線相等且互相垂直
D.矩形的對角線互相垂直
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF.
(1)求證:AD平分∠BAC;
(2)已知AC=15,BE=3,求AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某種細胞的直徑是0.000067厘米,將0.000067用科學記數(shù)法表示為( )
A. 0.67×10-5 B. 67×10-6 C. 6.7×10-6 D. 6.7×10-5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】華宇公司獲得授權生產某種奧運紀念品,經市場調查分析,該紀念品的銷售量(萬件)與紀念品的價格(元/件)之間的函數(shù)圖象如圖所示,該公司紀念品的生產數(shù)量(萬件)與紀念品的價格(元/件)近似滿足函數(shù)關系式 ,若每件紀念品的價格不小于20元,且不大于40元.
請解答下列問題:
(1)求與的函數(shù)關系式,并寫出的取值范圍;
(2)當價格為何值時,使得紀念品產銷平衡(生產量與銷售量相等);
(3)當生產量低于銷售量時,政府常通過向公司補貼紀念品的價格差來提高生產量,促成新的產銷平衡.若要使新的產銷平衡時銷售量達到46萬件,政府應對該紀念品每件補貼多少元?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com