【題目】已知函數(shù)y=(2m+1)x+m﹣3,
(1)若函數(shù)圖像經(jīng)過原點,求m的值;
(2)若這個函數(shù)是一次函數(shù),且y隨著x的增大而減小,求m的取值范圍.
【答案】
(1)解:把(0,0)代入,得:m﹣3=0,m=3
(2)解:根據(jù)y隨x的增大而減小說明k<0.即2m+1<0.
解得:m<
【解析】(1)根據(jù)待定系數(shù)法,只需把原點代入即可求解;(2)直線y=kx+b中,y隨x的增大而減小說明k<0.
【考點精析】認(rèn)真審題,首先需要了解一次函數(shù)的性質(zhì)(一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當(dāng)k>0時,y隨x的增大而增大(2)當(dāng)k<0時,y隨x的增大而減小),還要掌握確定一次函數(shù)的表達(dá)式(確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,點E是AB上一點,點F是AD延長線上一點,且DF=BE,連接CE、CF.
(1)求證:CE=CF.
(2)在圖1中,若點G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?
(3)根據(jù)你所學(xué)的知識,運用(1)、(2)解答中積累的經(jīng)驗,完成下列各題,如圖2,在四邊形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,且∠DCE=45°.
①若AE=6,DE=10,求AB的長;
②若AB=BC=9,BE=3,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠計劃每天生產(chǎn)零件個,但實際每天生產(chǎn)量與計劃量相比有出入. 下表是某周的生產(chǎn)情況(超產(chǎn)數(shù)量記為正、減產(chǎn)數(shù)量記為負(fù)):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減 |
(1)由表可知該廠星期四生產(chǎn)零件 個,這周實際生產(chǎn)零件 個.(用含的代數(shù)式表示)
(2) 產(chǎn)量最高日比最低日多生產(chǎn)零件 個.
(3) 若該周廠計劃每天生產(chǎn)零件數(shù)是,每個零件應(yīng)支付工資元,且每天超計劃數(shù)的零件每個另獎元,那這周實際應(yīng)支付工資多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,DC∥AB,DA⊥AB,AD=4cm,DC=5cm,AB=8cm.如果點P由B點出發(fā)沿BC方向向點C勻速運動,同時點Q由A點出發(fā)沿AB方向向點B勻速運動,它們的速度均為1cm/s,當(dāng)P點到達(dá)C點時,兩點同時停止運動,連接PQ,設(shè)運動時間為t s,解答下列問題:
(1)當(dāng)t為何值時,P,Q兩點同時停止運動?
(2)設(shè)△PQB的面積為S,當(dāng)t為何值時,S取得最大值,并求出最大值;
(3)當(dāng)△PQB為等腰三角形時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】校田園科技社團(tuán)計劃購進(jìn)A,B兩種花卉,兩次購買每種花卉的數(shù)量以及每次的總費用如下表所示:
花卉數(shù)量(單位:株) | 總費用 (單位:元) | ||
A | B | ||
第一次購買 | 10 | 25 | 225 |
第二次購買 | 20 | 15 | 275 |
(1)你從表格中獲取了什么信息?______________________________(請用自己的語言描述,寫出一條即可);
(2)A,B兩種花卉每株的價格各是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①、②分別是某種型號跑步機(jī)的實物圖與示意圖,已知踏板CD長為1.6m,CD與地面DE的夾角∠CDE為12°,支架AC長為0.8m,∠ACD為80°,求跑步機(jī)手柄的一端A的高度h(精確到0.1m). (參考數(shù)據(jù):sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知直線的圖象與x軸、y軸交于A,B兩點,直線經(jīng)過原點,與線段AB交于點C,把的面積分為2:1的兩部分,求直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點,其中A點坐標(biāo)為(﹣1,0),點C(0,5),另拋物線經(jīng)過點(1,8),M為它的頂點.
(1)求拋物線的解析式;
(2)求△MCB的面積S△MCB .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com