【題目】如圖,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,若點(diǎn)P從點(diǎn)A出發(fā),以每秒2cm的速度沿折線運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒。
(1)AC=______cm;
(2)若點(diǎn)P恰好在∠ABC的角平分線上,求此時(shí)的值;
【答案】(1)3(2)s.
【解析】
(1)根據(jù)題意由勾股定理即可求出AC的長(zhǎng);
(2)點(diǎn)P恰好在∠ABC的角平分線上,設(shè)CP=x,根據(jù)角平分線的性質(zhì)得DP=CP=x,BD=BC=4,故AD=1,AP=3-PC=3-x,利用Rt△ADP中AP2=AD2+DP2,即(3-x)2=12+x2,解得x=,即可求出運(yùn)動(dòng)的時(shí)間.
(1)根據(jù)題意勾股定理即可求出AC=
(2)作DP⊥AB,∵BP為∠ABC的角平分線,
設(shè)CP=x,∴DP=CP=x,BD=BC=4,故AD=1,AP=3-PC=3-x,
在Rt△ADP中AP2=AD2+DP2,即(3-x)2=12+x2,
解得x=,
故P點(diǎn)運(yùn)動(dòng)的距離為AB+BC+CP=
∴運(yùn)動(dòng)的時(shí)間為÷2=s.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)E是邊AC上一點(diǎn),線段BE垂直于∠BAC的平分線于點(diǎn)D,點(diǎn)M為邊BC的中點(diǎn),連接DM.
(1)求證: DM=CE;
(2)若AD=6,BD=8,DM=2,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在半徑為2的扇形AOB中,∠AOB=90°,點(diǎn)C是弧AB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A,B重合),OD⊥BC,OE⊥AC,垂足分別為D,E.
(1)當(dāng)BC=1時(shí),求線段OD的長(zhǎng);
(2)在△DOE中是否存在長(zhǎng)度保持不變的邊?如果存在,請(qǐng)指出并求其長(zhǎng)度,如果不存在,請(qǐng)說(shuō)明理由;
(3)設(shè)BD=x,△DOE的面積為y,求y關(guān)于x的函數(shù)表達(dá)式,并寫(xiě)出自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解學(xué)生最喜歡的球類(lèi)運(yùn)動(dòng)情況,隨機(jī)選取該校部分學(xué)生進(jìn)行調(diào)查,要求每名學(xué)生只寫(xiě)一類(lèi)最喜歡的球類(lèi)運(yùn)動(dòng),以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計(jì)圖的一部分,
類(lèi)別 | ||||||
類(lèi)型 | 足球 | 羽毛球 | 乒乓球 | 籃球 | 排球 | 其它 |
人數(shù) |
根據(jù)以上信息,解答下列問(wèn)題:
(1)被調(diào)查學(xué)生的總?cè)藬?shù)為 人.
(2)最喜歡籃球的有 人,最喜歡足球的學(xué)生數(shù)占被調(diào)查總?cè)藬?shù)的百分比為 %
(3)該校共有名學(xué)生,根據(jù)調(diào)查結(jié)果,估計(jì)該校最喜歡排球的學(xué)生人數(shù)有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(3分)如圖,AD是△ABC的角平分線,DE⊥AC,垂足為E,BF∥AC交ED的延長(zhǎng)線于點(diǎn)F,若BC恰好平分∠ABF,AE=2BF.給出下列四個(gè)結(jié)論:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結(jié)論共有( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】填寫(xiě)推理理由:
已知:如圖,D,F(xiàn),E分別是BC,AC,AB上的點(diǎn),DF∥AB,DE∥AC,試說(shuō)明∠EDF=∠A.
解:∵DF∥AB ( ),
∴∠A+∠AFD=180° ( ).
∵DE∥AC ( ),
∴∠AFD+∠EDF=180° ( ).
∴∠A=∠EDF ( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形網(wǎng)格中(網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)是1),△ABC的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o的直角坐標(biāo)系中解答下列問(wèn)題:
⑴ 作出△繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°的△AB1C1,再作出△AB1C1關(guān)于原點(diǎn)O成中心對(duì)稱(chēng)的△A1B2C2.
(2)請(qǐng)直接寫(xiě)出以A1、B2、C2為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo) .(寫(xiě)出一個(gè)即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AM∥CN,點(diǎn)B為平面內(nèi)一點(diǎn),AB⊥BC于B.
(1)如圖1,直接寫(xiě)出∠A和∠C之間的數(shù)量關(guān)系___;
(2)如圖2,過(guò)點(diǎn)B作BD⊥AM于點(diǎn)D,求證:∠ABD=∠C;
(3)如圖3,在(2)問(wèn)的條件下,點(diǎn)E. F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】作出函數(shù)y=﹣x+3的圖象,并利用圖象回答問(wèn)題:
(1)當(dāng)y<0時(shí),x的取值范圍為_____;
(2)當(dāng)﹣2<x<2時(shí),y的取值范圍為_____;
(3)圖象與直線y=x﹣1的交點(diǎn)坐標(biāo)為______;這兩條直線與y軸圍成的三角形面積為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com