【題目】將圖1,將一張直角三角形紙片ABC折疊,使點(diǎn)A與點(diǎn)C重合,這時(shí)DE為折痕,△CBE為等腰三角形;再繼續(xù)將紙片沿△CBE的對(duì)稱(chēng)軸EF折疊,這時(shí)得到了兩個(gè)完全重合的矩形(其中一個(gè)是原直角三角形的內(nèi)接矩形,另一個(gè)是拼合成的無(wú)縫隙、無(wú)重疊的矩形),我們稱(chēng)這樣兩個(gè)矩形為“疊加矩形”.
(1)如圖2,正方形網(wǎng)格中的△ABC能折疊成“疊加矩形”嗎?如果能,請(qǐng)?jiān)趫D2中畫(huà)出折痕;
(2)如圖3,在正方形網(wǎng)格中,以給定的BC為一邊,畫(huà)出一個(gè)斜三角形ABC,使其頂點(diǎn)A在格點(diǎn)上,且△ABC折成的“疊加矩形”為正方形;
(3)如果一個(gè)三角形所折成的“疊加矩形”為正方形,那么它必須滿(mǎn)足的條件是 ;
(4)如果一個(gè)四邊形一定能折成“疊加矩形”,那么它必須滿(mǎn)足的條件是 .
【答案】見(jiàn)解析
【解析】(1)圖2中將三角形的三個(gè)角分別向三角形內(nèi)部進(jìn)行折疊即可;
(2)圖3中只要使三角形一邊上的高等于該邊長(zhǎng)即可;
(3)利用折疊后的兩個(gè)重合的正方形可知,三角形一邊長(zhǎng)的一半和這一邊上的高的一半都等于正方形的邊長(zhǎng),所以三角形的一邊和這邊上的高應(yīng)該相等;
(4)如果一個(gè)四邊形能折疊成疊加矩形,可以將四邊形的四個(gè)角分別向四邊形內(nèi)部折疊即可得到該結(jié)果,折痕應(yīng)經(jīng)過(guò)四邊中點(diǎn),而連接四邊形各邊中點(diǎn)得到矩形的話(huà),該四邊形的對(duì)角線(xiàn)應(yīng)互相垂直.
(1)(2)
(3)三角形的一邊長(zhǎng)與該邊上的高相等的直角三角形或銳角三角形;
(4)對(duì)角線(xiàn)互相垂直.(注:回答菱形、正方形不給分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠ABD、∠ACD的角平分線(xiàn)交于點(diǎn)P,若∠A=50°,∠D=10°,則∠P的度數(shù)為( )
A. 10°B. 15°C. 20°D. 25°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=∠DOC=90°,OE平分∠AOD,反向延長(zhǎng)射線(xiàn)OE至F.
(1)∠AOD和∠BOC是否互補(bǔ)?說(shuō)明理由;
(2)射線(xiàn)OF是∠BOC的平分線(xiàn)嗎?說(shuō)明理由;
(3)反向延長(zhǎng)射線(xiàn)OA至點(diǎn)G,射線(xiàn)OG將∠COF分成了4:3的兩個(gè)角,求∠AOD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖Rt△ABC中,∠C=90°,AC=6,BC=8,D是AB的中點(diǎn),P是直線(xiàn)BC上一點(diǎn),把△BDP沿PD所在直線(xiàn)翻折后,點(diǎn)B落在點(diǎn)Q處,如果QD⊥BC,那么點(diǎn)P和點(diǎn)B間的距離等于____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖為奇數(shù)排成的數(shù)表,用十字框任意框出個(gè)數(shù),記框內(nèi)中間這個(gè)數(shù)為,其它四個(gè)數(shù)分別記為,,,(如圖);圖為按某一規(guī)律排成的另一個(gè)數(shù)表,用十字框任意框出個(gè)數(shù),記框內(nèi)中間這個(gè)數(shù)為,其它四個(gè)數(shù)記為,,,(如圖).
(1)請(qǐng)你含的代數(shù)式表示.
(2)請(qǐng)你含的代數(shù)式表示.
(3)若,,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,∠BCD=∠D=90°,E是邊AB的中點(diǎn).已知AD=1,AB=2.
(1)設(shè)BC=x,CD=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出定義域;
(2)當(dāng)∠B=70°時(shí),求∠AEC的度數(shù);
(3)當(dāng)△ACE為直角三角形時(shí),求邊BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為4的正方形ABCD中,P是BC邊上一動(dòng)點(diǎn)(不含B、C點(diǎn)).將△ABP沿直線(xiàn)AP翻折,點(diǎn)B落在點(diǎn)E處;在CD上有一點(diǎn)M,使得將△CMP沿直線(xiàn)MP翻折后,點(diǎn)C落在直線(xiàn)PE上的點(diǎn)F處,直線(xiàn)PE交CD于點(diǎn)N,連接MA,NA.則以下結(jié)論中正確的有_____________(寫(xiě)出所有正確結(jié)論的序號(hào)).
①∠N\AF=45°;②當(dāng)P為 BC中點(diǎn)時(shí),AE為線(xiàn)段NP的中垂線(xiàn);
③四邊形AMCB的面積最大值為10; ④線(xiàn)段AM的最小值為2;
⑤當(dāng)△ABP≌△ADN時(shí),BP=4-4.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC是等邊三角形,點(diǎn)D、F分別在線(xiàn)段BC、AB上,∠EFB=60°,DC=EF.
(1)求證:四邊形EFCD是平行四邊形;
(2)若BF=EF,求證:AE=AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】暑期臨近,重慶市某中學(xué)校為了豐富學(xué)生的暑期文化生活,同時(shí)幫助孩子融洽親子關(guān)系,增進(jìn)親子間的情感交流,計(jì)劃組織學(xué)生去某景區(qū)參加為期一周的“親子一家游”活動(dòng). 若報(bào)名參加此次活動(dòng)的學(xué)生人數(shù)共有56人,其中要求參加的每名學(xué)生都至少需要一名家長(zhǎng)陪同參加.
(1)假設(shè)參加此次活動(dòng)的家長(zhǎng)人數(shù)是參加學(xué)生人數(shù)的2倍少2人,為了此次活動(dòng)學(xué)校專(zhuān)門(mén)為每名學(xué)生和家長(zhǎng)購(gòu)買(mǎi)一件T恤衫, 家長(zhǎng)的T恤衫每購(gòu)買(mǎi)8件贈(zèng)送1件學(xué)生T恤衫(不足8件不贈(zèng)送),學(xué)生T恤衫每件15元,學(xué)校購(gòu)買(mǎi)服裝的費(fèi)用不超過(guò)3401元,請(qǐng)問(wèn)每件家長(zhǎng)T恤衫的價(jià)格最高是多少元?
(2)已知該景區(qū)的成人票價(jià)每張100元,學(xué)生票價(jià)每張50元,為了支持此次活動(dòng),該景區(qū)特地推出如下優(yōu)惠活動(dòng):每張成人票價(jià)格下調(diào)a%,學(xué)生票價(jià)格下調(diào).a% 另外,經(jīng)統(tǒng)計(jì)此次參加活動(dòng)的家長(zhǎng)人數(shù)比學(xué)生人數(shù)多a%, 參加此次活動(dòng)的購(gòu)買(mǎi)票價(jià)總費(fèi)用比未優(yōu)惠前減少了a%,求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com