【題目】如圖,已知平行四邊形ABCD,延長(zhǎng)AD到E,使DE=AD,連接BE與DC交于O點(diǎn).
(1)求證:△BOC≌△EOD;
(2)當(dāng)△ABE滿足什么條件時(shí),四邊形BCED是菱形?證明你的結(jié)論.
【答案】(1)證明見解析;(2)當(dāng)∠ABE=90°時(shí),BE⊥CD,四邊形BCED是菱形,證明見解析.
【解析】
試題(1)根據(jù)平行四邊形性質(zhì)得出AD=BC,AD∥BC,推出∠EDO=∠BCO,∠DEO=∠CBO,求出DE=BC,根據(jù)ASA推出兩三角形全等即可;
(2)由已知可得四邊形BCED是平行四邊形,只需證明DC⊥BE即可證明四邊形BCDE要菱形,通過已知可得OD∥AB,從而得∠EOD=∠ABE,由此可知當(dāng)∠ABE=90°時(shí),BE⊥CD,四邊形BCED是菱形.
試題解析:(1)∵在平行四邊形ABCD中,
AD=BC,AD∥BC,
∴∠EDO=∠BCO,∠DEO=∠CBO,
∵DE=AD,
∴DE=BC,
在△BOC和△EOD中,
∴△BOC≌△EOD(ASA);
(2)結(jié)論:當(dāng)∠ABE=90°時(shí),BE⊥CD,四邊形BCED是菱形,
∵DE=BC,DE∥BC,
∴四邊形BCED是平行四邊形,
∴EO=OB,
∵DE=AD,
∴OD∥AB,
∴∠EOD=∠ABE,
∴當(dāng)∠ABE=90°時(shí),BE⊥CD,四邊形BCED是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司計(jì)劃購(gòu)買若干臺(tái)電腦,現(xiàn)從兩家商場(chǎng)了解到同一種型號(hào)的電腦報(bào)價(jià)均為元,并且多買都有一定的優(yōu)惠. 各商場(chǎng)的優(yōu)惠條件如下:
甲商場(chǎng)優(yōu)惠條件:第一臺(tái)按原價(jià)收費(fèi),其余的每臺(tái)優(yōu)惠;
乙商場(chǎng)優(yōu)惠條件:每臺(tái)優(yōu)惠.
設(shè)公司購(gòu)買臺(tái)電腦,選擇甲商場(chǎng)時(shí), 所需費(fèi)用為元,選擇乙商場(chǎng)時(shí),所需費(fèi)用為元,請(qǐng)分別求出與之間的關(guān)系式.
什么情況下,兩家商場(chǎng)的收費(fèi)相同?什么情況下,到甲商場(chǎng)購(gòu)買更優(yōu)惠?什么情況下,到乙商場(chǎng)購(gòu)買更優(yōu)惠?
現(xiàn)在因?yàn)榧毙,?jì)劃從甲乙兩商場(chǎng)一共買入臺(tái)某品牌的電腦,其中從甲商場(chǎng)購(gòu)買臺(tái)電腦.已知甲商場(chǎng)的運(yùn)費(fèi)為每臺(tái)元,乙商場(chǎng)的運(yùn)費(fèi)為每臺(tái)元,設(shè)總運(yùn)費(fèi)為元,在甲商場(chǎng)的電腦庫存只有臺(tái)的情況下,怎樣購(gòu)買,總運(yùn)費(fèi)最少?最少運(yùn)費(fèi)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),,且,連接,點(diǎn)是的中點(diǎn),連接,則__________,___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B、C、D為矩形的四個(gè)頂點(diǎn),AB=16cm,AD=6cm,動(dòng)點(diǎn)P、Q分別從點(diǎn)A、C同時(shí)出發(fā),點(diǎn)P以3cm/s的速度向點(diǎn)B移動(dòng),一直到達(dá)B為止,點(diǎn)Q以2 cm/s的速度向D移動(dòng).
(1)P、Q兩點(diǎn)從出發(fā)開始到幾秒?四邊形PBCQ的面積為33cm2;
(2)P、Q兩點(diǎn)從出發(fā)開始到幾秒時(shí)?點(diǎn)P和點(diǎn)Q的距離是10cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形△ABC的腰長(zhǎng)AB=AC=25,BC=40,動(dòng)點(diǎn)P從B出發(fā)沿BC向C運(yùn)動(dòng),速度為10單位/秒.動(dòng)點(diǎn)Q從C出發(fā)沿CA向A運(yùn)動(dòng),速度為5單位/秒,當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)的時(shí)候兩個(gè)點(diǎn)同時(shí)停止運(yùn)動(dòng),點(diǎn)P′是點(diǎn)P關(guān)于直線AC的對(duì)稱點(diǎn),連接P′P和P′Q,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)若當(dāng)t的值為m時(shí),PP′恰好經(jīng)過點(diǎn)A,求m的值;
(2)設(shè)△P′PQ的面積為y,求y與t之間的函數(shù)關(guān)系式(m<t≤4) ;
(3)是否存在某一時(shí)刻t,使PQ平分角∠P′PC?存在,求相應(yīng)的t值,不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高學(xué)生漢字書寫的能力,增強(qiáng)保護(hù)漢字的意識(shí),某校舉辦了首屆“漢字聽寫大賽”,學(xué)生經(jīng)選拔后進(jìn)入決賽,測(cè)試方法是:聽寫100個(gè)漢字,每正確聽寫出一個(gè)漢字得1分,本次決賽,學(xué)生成績(jī)?yōu)?/span>x(分),且50≤x<100,將其按分?jǐn)?shù)段分為五組,繪制出以下不完整表格:
組別 | 成績(jī)x(分) | 頻數(shù)(人數(shù)) | 頻率 |
一 | 50≤x<60 | 2 | 0.04 |
二 | 60≤x<70 | 10 | 0.2 |
三 | 70≤x<80 | 14 | b |
四 | 80≤x<90 | a | 0.32 |
五 | 90≤x<100 | 8 | 0.16 |
請(qǐng)根據(jù)表格提供的信息,解答以下問題:
(1)直接寫出表中a=________,b=________;
(2)請(qǐng)補(bǔ)全右面相應(yīng)的頻數(shù)分布直方圖;
(3)若決賽成績(jī)不低于80分為優(yōu)秀,則本次大賽的優(yōu)秀率為________.
(4)請(qǐng)根據(jù)得到的統(tǒng)計(jì)數(shù)據(jù),簡(jiǎn)要分析這些同學(xué)的漢字書寫能力,并為提高同學(xué)們的書寫漢字能力提一條建議(所提建議不超過20字).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,D是邊AC的中點(diǎn),連接BD,EC⊥BC于點(diǎn)C,CE=BD.求證:△ADE是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=-x+分別與x軸、y軸交于B、C兩點(diǎn),點(diǎn)A在x軸上,∠ACB=90°,拋物線=ax2+bx+經(jīng)過A、B兩點(diǎn).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)求拋物線的解析式;
(3)點(diǎn)M是直線BC上方拋物線上的一點(diǎn),過點(diǎn)M從作MH⊥BC于點(diǎn)H,作軸MD∥y軸交BC于點(diǎn)D,求DMH周長(zhǎng)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形ABCD的邊長(zhǎng)為3,∠BAD=60°.
(1)連接AC,過點(diǎn)D作DE⊥AB于點(diǎn)E,DF⊥BC交AC于點(diǎn)F,DE、DF于點(diǎn)M、N.
①依題意補(bǔ)全圖1;
②求MN的長(zhǎng);
(2)如圖2,將(1)中∠EDF以點(diǎn)D為中心,順時(shí)針旋轉(zhuǎn)45°,其兩邊DE′、DF′分別與直線AB、BC相交于點(diǎn)Q、P,連接QP,請(qǐng)寫出求△DPQ的面積的思路.(可以不寫出計(jì)算結(jié)果)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com