【題目】如圖,矩形ABCD的邊ABx軸上,AB的中點(diǎn)與原點(diǎn)O重合,AB2,AD1,點(diǎn)Q的坐標(biāo)為(0,2).點(diǎn)Px,0)在邊AB上運(yùn)動(dòng),若過點(diǎn)QP的直線將矩形ABCD的周長(zhǎng)分成21兩部分,則x的值為( 。

A. -B. -C. -D. -

【答案】D

【解析】

分類討論:點(diǎn)POA上和點(diǎn)POB上兩種情況.根據(jù)題意列出比例關(guān)系式,直接解答即可得出x得出值.

如圖,∵AB的中點(diǎn)與原點(diǎn)O重合,在矩形ABCD中,AB2,AD1,

A(﹣1,0),B1,0),C1,1).

當(dāng)點(diǎn)POB上時(shí).易求G,1

∵過點(diǎn)Q、P的直線將矩形ABCD的周長(zhǎng)分成21兩部分,

AP+AD+DG3+x,CG+BC+BP3x

由題意可得:3+x23x),

解得x

由對(duì)稱性可求當(dāng)點(diǎn)POA上時(shí),x=﹣

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD,頂點(diǎn)A(1,3)B(1,1)、C(3,1),規(guī)定把正方形ABCD先沿x軸翻折,再向左平移1個(gè)單位為一次交換,如此這樣,連續(xù)經(jīng)過2 020次變換后,正方形ABCD的對(duì)角線交點(diǎn)M的坐標(biāo)變?yōu)?/span>_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在 ABCD 中,AEBF 分別平分∠DAB 和∠ABC,交 CD 于點(diǎn) EF,AE、BF 相交于點(diǎn) M

(1)求證:AEBF;

(2)判斷線段 DF CE 的大小關(guān)系,并予以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店第一次用600元購(gòu)進(jìn)2B鉛筆若干支,第二次又用600元購(gòu)進(jìn)該款鉛筆,但這次每支的進(jìn)價(jià)是第一次進(jìn)價(jià)的倍,購(gòu)進(jìn)數(shù)量比第一次少了30支.

(1)求第一次每支鉛筆的進(jìn)價(jià)是多少元?

(2)若要求這兩次購(gòu)進(jìn)的鉛筆按同一價(jià)格全部銷售完畢后獲利不低于420元,問每支售價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A1,A2,…,An均在直線y=x﹣2上,點(diǎn)B1,B2,…,Bn均在雙曲線y=﹣上,并且滿足:A1B1x軸,B1A2y軸,A2B2x軸,B2A3y軸,…,AnBnx軸,BnAn+1y軸,,記點(diǎn)An的橫坐標(biāo)為an(n為正整數(shù)).若a1=﹣2,則a2016=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,延長(zhǎng)至點(diǎn),使,連接,以為直角邊在左側(cè)作等腰三角形,其中,連接.

1)求證:;

2)若,求的長(zhǎng).

3有何位置關(guān)系?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】a、bc為△ABC的三邊。

(1)判斷代數(shù)式a2abc+b的值與0的大小關(guān)系,并說(shuō)明理由;

(2)滿足a+b+c=ab+ac+bc,試判斷△ABC的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿射線BC的方向以每秒2cm的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)A出發(fā),在線段AD上以每秒1cm的速度向點(diǎn)D運(yùn)動(dòng),點(diǎn)P,Q分別從點(diǎn)B,A同時(shí)出發(fā),當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)D時(shí),點(diǎn)P隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(秒).

(1)當(dāng)t為何值時(shí),四邊形PQDC是平行四邊形

(2)當(dāng)t為何值時(shí),以C,D,Q,P為頂點(diǎn)的梯形面積等于60cm2

(3)是否存在點(diǎn)P,使△PQD是等腰三角形?若存在,請(qǐng)求出所有滿足要求的t的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)D、E分別是等邊三角形ABC的邊BCAC上的點(diǎn),連接ADBE交于點(diǎn)O,且ABD≌△BCE

1)若AB=3,AE=2,則BD= ;

2)若∠CBE=15°,則∠AOE= ;

3)若∠BAD=a,猜想∠AOE的度數(shù),并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案