【題目】為了從甲、乙兩人中選拔一人參加射擊比賽,現(xiàn)對他們的射擊成績進行了測試,5次打靶命中的環(huán)數(shù)如下:

甲:8,7,10,7,8; 乙:9,5,10,9,7;

(1)將下表填寫完整:

平均數(shù)

極差

方差

3

1.2

8

3.2

(2)根據(jù)以上信息,若你是教練,選擇誰參加射擊比賽,理由是什么?

(3)若乙再射擊一次,命中8環(huán),則乙這六次射擊成績的方差會 .(填變大或變小或不變

【答案】(1)8,5;(2)選擇甲參加射擊比賽,理由見解析;(3)變小.

【解析】

(1)根據(jù)平均數(shù)的計算公式代值計算求出甲的平均數(shù),再根據(jù)極差的定義用最大值減去最小值求出乙的極差;

(2)根據(jù)甲乙的平均數(shù)、方差、極差,在平均數(shù)相同的情況下,選擇方差、極差較小的即可;

(3)根據(jù)方差公式求出乙六次的方差,再進行比較即可.

(1)甲的平均數(shù)是:(8+7+10+7+8)÷5=8;

乙的極差是10-5=5;

故答案為:8,5;

(2)選擇甲參加射擊比賽,

理由如下:因為甲、乙兩人射擊成績的平均數(shù)相同都是8環(huán),但甲射擊成績的方差、極差小于乙,因此甲的射擊成績更穩(wěn)定,所以,選擇甲參加射擊比賽.

(3)∵前5次乙的方差是3.2,乙再射擊一次,命中8環(huán),

∴乙這六次射擊成績的方差是×[3.2×5+(8-8)2]=

<3.2,

∴乙這六次射擊成績的方差會變小;

故答案為:變小

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,將一個長方形紙片沿對角線折疊.點落在點處,于點,已知,則折疊后重合部分的面積為(

A.6B.8C.10D.12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=ax2+bx+c經(jīng)過A(-1,0)、B(3,0)、C(0,3)三點,直線l是拋物線的對稱軸.

(1)求拋物線的函數(shù)關系式;

(2)設點P是直線l上的一個動點,當PAC的周長最小時,求點P的坐標;

(3)在直線l上是否存在點M,使MAC為等腰三角形?若存在,直接寫出所有符合條件的點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:關于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.

(1)求二次函數(shù)的表達式;

(2)y軸上是否存在一點P,使PBC為等腰三角形.若存在,請求出點P的坐標;

(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M 達點B時,點MN同時停止運動,問點M、N運動到何處時,MNB面積最大,試求出最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某輛汽車油箱中原有汽油60,汽車每行駛50耗油6

1)完成下表

汽車行駛路程

0

50

100

150

耗油量

__________

__________

__________

__________

2)寫出耗油量與汽車行駛路程之間的關系式

3)求出油箱剩余油量與汽車行駛路程之間的關系式嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線PA交O于A、B兩點,AE是O的直徑,點C為O上一點,且AC平分PAE,過C作CDPA,垂足為D.

(1)求證:CD為O的切線;

(2)若DC+DA=6,⊙O的直徑為10,求AB的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC 中,ADBC 于點 D,點 E BD邊上一點,過點 E EGAD,分別交 AB CA 的延長線于點 F,G,∠AFG=G

1)證明:△ABD≌△ACD

2)若∠B=40°,直接寫出∠FAG= °

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于的一元二次方程

若方程的一個根為,求的值及另一個根;

若該方程根的判別式的值等于,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,△ABC在平面直角坐標系中的位置如圖①所示,A點坐標為(﹣4,0),B點坐標為(6,0),點D為BC的中點,點E為線段AB上一動點,連接DE經(jīng)過點A、B、C三點的拋物線的解析式為

(1)求拋物線的解析式;

(2)如圖①,將△ADE以DE為軸翻折,點A的對稱點為點G,當點G恰好落在拋物線的對稱軸上時,求G點的坐標;

(3)如圖②,當點E在線段AB上運動時,拋物線的對稱軸上是否存在點F,使得以C、D、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案