【題目】如圖,在正方形ABCD中,P是對角線AC上的一點,點EBC的延長線上,且PE=PB

1)當PC=CE時,求CDP的度數(shù);

2)試用等式表示線段PBBC、CE之間的數(shù)量關系,并證明.

【答案】122.5°;(2,證明見解析

【解析】

1)由證明,得出,,由等腰三角形的性質和三角形內角和定理得出,即可得出結果;

2)連接,證明,由勾股定理得出,等量代換即可得

解:(1四邊形是正方形,

,,

,

中,

,

,

,,

,

,

;

2,理由如下:

連接,如圖所示:

由(1)得:,,

∵∠DCE=90°,

∴∠2+CEP=90°,

∵∠1=2,

∴∠1+CDP=90°,

∴∠DPE=90°,

∵∠DCE=90°,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC內接于以AB為直徑的⊙O,過點C作⊙O的切線交BA的延長線于點D,且DAAB=12.

(1)求∠CDB的度數(shù);

(2)在切線DC上截取CE=CD,連接EB,判斷直線EB與⊙O的位置關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】勾股定理是一個基本的幾何定理,早在我國西漢吋期算書《周髀算經(jīng)》就有“勾三股四弦五”的記載.如果一個直角三角形三邊長都是正整數(shù),這樣的直角三角形叫“整數(shù)直角三角形”;這三個整數(shù)叫做一組“勾股數(shù)”,如:3,4,5;512,13;7,24,258,15,179,40,41等等都是勾股數(shù).

1)小李在研究勾股數(shù)時發(fā)現(xiàn),某些整數(shù)直角三角形的斜邊能寫成兩個整數(shù)的平方和,有一條直角邊能寫成這兩個整數(shù)的平方差.如3,4,5中,522+1232212;51213中,1332+2253222;請證明:m,n為正整數(shù),且mn,若有一個直角三角形斜邊長為m2+n2,有一條直角長為m2n2,則該直角三角形一定為“整數(shù)直角三角形”;

2)有一個直角三角形兩直角邊長分別為,斜邊長4,且ab均為正整數(shù),用含b的代數(shù)式表示a,并求出ab的值;

3)若c1a12+b12,c2a22+b22,其中,a1、a2、b1、b2均為正整數(shù).證明:存在一個整數(shù)直角三角形,其斜邊長為c1c2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,EAD邊的中點,BEAC于點F,連接DF,下列四個結論:①△AEF∽△CAB;CF2AFDFDC;S四邊形CDEFSABF.其中正確的結論有 ) 

 

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司購買了一批、型芯片,其中型芯片的單價比型芯片的單價少9元,已知該公司用3120元購買型芯片的條數(shù)與用4200元購買型芯片的條數(shù)相等.

(1)求該公司購買的、型芯片的單價各是多少元?

(2)若兩種芯片共購買了200條,且購買的總費用為6280元,求購買了多少條型芯片?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如下圖,中,三條內角平分線相交于點,于點.

1)若,求的度數(shù).

2)若,,則相等嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形紙片ABCD中,AB=4,∠A=60°,將菱形紙片翻折,使點A落在CD的中點E處,折痕為FG,點F、G分別在邊AB、AD上.則sin∠EFG的值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某校的數(shù)學學科實踐活動課上,老師布置的任務是對本校七年級學生零花錢使用情況進行隨機抽樣調查,調查結果分為“A.買零食”、“B.買學習用品”、“C.玩網(wǎng)絡游戲”、“D.捐款”四項進行統(tǒng)計,學生將統(tǒng)計結果繪制成了如下兩幅不完整的統(tǒng)計圖(圖1、圖2),請根據(jù)圖中的信息解答下列問題.

1)這次調查的學生為______人,圖2中,______,______.

2)補全圖1中的條形統(tǒng)計圖.

3)在圖2的扇形統(tǒng)計圖中,表示“C.玩網(wǎng)絡游戲”所在扇形的圓心角度數(shù)為______度.

4)據(jù)統(tǒng)計,遼陽市七年級約有學生12000人,那么根據(jù)抽樣調查的結果,可估計零花錢用于“D.捐款”的學生約有______人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】端午節(jié)是中華民族的傳統(tǒng)節(jié)日,節(jié)日期間大家都有吃粽子的習慣.某超市去年銷售蛋黃粽、肉粽、豆沙粽的數(shù)量比為352.根據(jù)市場調查,超市決定今年在去年銷售量的基礎上進貨,肉粽增加20%、豆沙粽減少10%、蛋黃粽不變.為促進銷售,將全部粽子包裝成三種禮盒,禮盒A2個蛋黃粽、4個肉粽、2個豆沙粽,禮盒B3個蛋黃粽、3個肉粽、2個豆沙粽,禮盒C2個蛋黃粽、5個肉粽、1個豆沙粽,其中禮盒AC的總數(shù)不超過200盒,禮盒BC的總數(shù)超過210盒.每個蛋黃粽、肉粽、豆沙粽的售價分別為6元、5元、4元,且A、BC三種禮盒的包裝費分別為10元、12元、9元(禮盒售價為粽子價格加上包裝費).若這些禮盒全部售出,則銷售額為_____元.

查看答案和解析>>

同步練習冊答案