【題目】如圖,在平面直角坐標(biāo)系中,已知兩點A(m,0),B(0,n)(n>m>0),點C在第一象限,AB⊥BC,BC=BA,點P在線段OB上,OP=OA,AP的延長線與CB的延長線交于點M,AB與CP交于點N.
(1)點C的坐標(biāo)為: (用含m,n的式子表示);
(2)求證:BM=BN;
(3)設(shè)點C關(guān)于直線AB的對稱點為D,點C關(guān)于直線AP的對稱點為G,求證:D,G關(guān)于x軸對稱.
【答案】(1)(n,m+n);(2)見解析;(3)見解析
【解析】
試題分析:(1)過C點作CE⊥y軸于點E,根據(jù)AAS證明△AOB≌△BEC,根據(jù)全等三角形的性質(zhì)即可得到點C的坐標(biāo);
(2)根據(jù)全等三角形的性質(zhì)的性質(zhì)和等量代換可得∠1=∠2,根據(jù)ASA證明△ABM≌△CBN,根據(jù)全等三角形的性質(zhì)即可得到BM=BN;
(3)根據(jù)SAS證明△DAH≌△GAH,根據(jù)全等三角形的性質(zhì)即可求解.
(1)解:過C點作CE⊥y軸于點E,
∵CE⊥y軸,
∴∠BEC=90°,
∴∠BEC=∠AOB,
∵AB⊥BC,
∴∠ABC=90°,
∴∠ABO+∠CBE=90°,
∵∠ABO+∠BAO=90°,
∴∠CBE=∠BAO,
在△AOB與△BEC中,
,
∴△AOB≌△BEC(AAS),
∴CE=OB=n,BE=OA=m,
∴OE=OB+BE=m+n,
∴點C的坐標(biāo)為(n,m+n).
故答案為:(n,m+n);
(2)證明:∵△AOB≌△BEC,
∴BE=OA=OP,CE=BO,
∴PE=OB=CE,
∴∠EPC=45°,
∠APC=90°,
∴∠1=∠2,
在△ABM與△CBN中,
,
∴△ABM≌△CBN(ASA),
∴BM=BN;
(3)證明:∵點C關(guān)于直線AB的對稱點為D,點C關(guān)于直線AP的對稱點為G,
∴AD=AC,AG=AC,
∴AD=AG,
∵∠1=∠5,∠1=∠6,
∴∠5=∠6,
在△DAH與△GAH中,
,
∴△DAH≌△GAH(SAS),
∴D,G關(guān)于x軸對稱.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某個體經(jīng)營戶銷售同一型號的A、B兩種品牌的服裝,平均每月共銷售60件,已知兩種品牌的成本和利潤如表所示,設(shè)平均每月的利潤為y元,每月銷售A品牌x件.
(1)寫出y關(guān)于x的函數(shù)關(guān)系式.
(2)如果每月投入的成本不超過6500元,所獲利潤不少于2920元,不考慮其他因素,那么銷售方案有哪幾種?
(3)在(2)的條件下要使平均每月利潤率最大,請直接寫出A、B兩種品牌的服裝各銷售多少件?
A | B | |
成本(元/件) | 120 | 85 |
利潤(元/件) | 60 | 30 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E、F分別為邊AB、CD的中點,AC是對角線,過點B作BG∥AC交DA的延長線于點G.
(1)求證:CE∥AF;
(2)若∠G=90°,求證:四邊形CEAF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC與BD相交于點O,∠D=∠C,添加下列哪個條件后,仍不能使△ADO≌△BCO的是( 。
A. AD=BC B. AC=BD C. OD=OC D. ∠ABD=∠BAC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(閱讀理解)
若A,B,C為數(shù)軸上三點,若點C到A的距離是點C到B的距離的2倍,我們就稱點C是(A,B)的優(yōu)點.
例如,如圖①,點A表示的數(shù)為﹣1,點B表示的數(shù)為2.表示1的點C到點A的距離是2,到點B的距離是1,那么點C是(A,B)的優(yōu)點;又如,表示0的點D到點A的距離是1,到點B的距離是2,那么點D就不是(A,B)的優(yōu)點,但點D是(B,A)的優(yōu)點.
(知識運用)
如圖②,M、N為數(shù)軸上兩點,點M所表示的數(shù)為﹣2,點N所表示的數(shù)為4.
(1)數(shù) 所表示的點是(M,N)的優(yōu)點;
(2)如圖③,A、B為數(shù)軸上兩點,點A所表示的數(shù)為﹣20,點B所表示的數(shù)為40.現(xiàn)有一只電子螞蟻P從點B出發(fā),以4個單位每秒的速度向左運動,到達(dá)點A停止.當(dāng)t為何值時,P、A和B中恰有一個點為其余兩點的優(yōu)點?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】運動時心跳速率通常和人的年齡有關(guān)。用a表示一個人的年齡,用b表示正常情況下這個人在運動時所能承受的每分鐘心跳的最高次數(shù),則.
(1)正常情況下,一個14歲的少年運動時所能承受的每分鐘心跳的最高次數(shù)是多少?
(2)當(dāng)一個人的年齡增加10歲時,他運動時承受的每分鐘心跳最高次數(shù)有何變化?變化次數(shù)是多少?
(3)一個45歲的人運動時,10秒心跳次數(shù)為22次,請問他有危險嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按下面的程序計算,當(dāng)輸入x=100時,輸出結(jié)果為501;當(dāng)輸入x=20時,輸出結(jié)果為506;如果開始輸入的值x為正數(shù),最后輸出的結(jié)果為656,那么滿足條件的x的值最多有( 。
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實踐操作:在矩形ABCD中,AB=4,AD=3,現(xiàn)將紙片折疊,點D的對應(yīng)點記為點P,折痕為EF(點E、F是折痕與矩形的邊的交點),再將紙片還原.
初步思考:
(1)若點P落在矩形ABCD的邊AB上(如圖①)
①當(dāng)點P與點A重合時,∠DEF= °;當(dāng)點E與點A重合時,∠DEF= °;
②當(dāng)點E在AB上,點F在DC上時(如圖②),
求證:四邊形DEPF為菱形,并直接寫出當(dāng)AP=3.5時的菱形EPFD的邊長.
深入探究
(2)若點P落在矩形ABCD的內(nèi)部(如圖③),且點E、F分別在AD、DC邊上,請直接寫出AP的最小值 .
拓展延伸
(3)若點F與點C重合,點E在AD上,線段BA與線段FP交于點M(如圖④).在各種不同的折疊位置中,是否存在某一情況,使得線段AM與線段DE的長度相等?若存在,請直接寫出線段AE的長度;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com