【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,則下 列結(jié)論中正確的個數(shù)有(

①4a+b=0;

②9a+3b+c<0;

若點A3,y1),點B,y2),點C5,y3)在該函數(shù)圖象上,則y1y3y2;

若方程a(x+1)(x﹣5)=﹣3的兩根為x1x2 , x1<x2x1<﹣1<5<x2

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】試題分析:對稱軸為直線x=2,則,則4a+b=0,則①正確;當x=3時函數(shù)值為正數(shù),即,則②錯誤;對于開口向下的函數(shù),離對稱軸越遠,則函數(shù)值越小,則,則③正確;根據(jù)函數(shù)圖像可知:當y=-3時, ,則④正確;故本題選C

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y1kx+2圖象與反比例函數(shù)y2圖象相交于A,B兩點,已知點B的坐標為(3,﹣1)

1)求一次函數(shù)和反比例函數(shù)的解析式;

2)請直接寫出不等式kx2的解集;

3)點Cx軸上一動點,當SABC3時,求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ACB和△ECD中,∠ACB=ECD=a,且AC=BCEC=DC,AE、BD交于P點,連CP

1)求證:ACE≌△BCD

2)求∠APC的度數(shù)(用含a的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+ca0,c0)交x軸于點A,B,交y軸于點C,設(shè)過點A,BC三點的圓與y軸的另一個交點為D

1)如圖1,已知點AB,C的坐標分別為(﹣20),(8,0),(0,﹣4);

求此拋物線的表達式與點D的坐標;

若點M為拋物線上的一動點,且位于第四象限,求△BDM面積的最大值;

2)如圖2,若a=1,求證:無論b,c取何值,點D均為定點,求出該定點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直角坐標系中的網(wǎng)格由單位正方形構(gòu)成,中,點坐標為,點坐標為,點坐標為

1的長為_______

2)求證:;

3)若以、及點為頂點的四邊形為平行四邊形,寫出點在第一象限時的坐標______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為落實立德樹人根本任務(wù),培養(yǎng)德智體美勞全面發(fā)展的社會主義接班人,育才學校在設(shè)立學生獎學金時規(guī)定:每學期對學生的德智體美勞五個方面進行三次綜合素質(zhì)評價,分別是:假期綜合素質(zhì)評價、期中綜合素質(zhì)評價、期末綜合素質(zhì)評價,八年級(1)班的小明和八年級(2)班的小亮兩位同學同時進入一等獎學金測評,他們的三次綜合素質(zhì)評價成績?nèi)缦卤恚?/span>

假期綜合素質(zhì)評價成績

期中綜合素質(zhì)評價成績

期末綜合素質(zhì)評價成績

小明

96

91

92

小亮

95

93

91

1)如果從三次綜合素質(zhì)評價成績穩(wěn)定性的角度來看,誰可以得一等獎學金?請你通過計算回答;

2)如果假期綜合素質(zhì)評價成績、期中綜合素質(zhì)評價成績、期末綜合素質(zhì)評價成績按的比例計入最終成績,誰可以得一等獎學金?請你通過計算回答.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=+mx+3x軸交于A,B兩點,與y軸交于點C,點B的坐標為(30),

1)求m的值及拋物線的頂點坐標.

2)點P是拋物線對稱軸l上的一個動點,當PA+PC的值最小時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在長方形ABCD中,AB=8cmBC=12cm,EAB的中點,動點P在線段BC上以4cm/s的速度由點BC運動,同時,動點Q在線段CD上由點C向點D運動,設(shè)運動時間為ts).

1)當t=2時,求EBP的面積;

2)若動點Q以與動點P不同的速度運動,經(jīng)過多少秒,EBPCQP全等?此時點Q的速度是多少?

3)若動點Q以(2)中的速度從點C出發(fā),動點P以原來的速度從點B同時出發(fā),都逆時針沿長方形ABCD的四邊形運動,經(jīng)過多少秒,點P與點Q第一次在長方形ABCD的哪條邊上相遇?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】夏季空調(diào)銷售供不應(yīng)求,某空調(diào)廠接到一份緊急訂單,要求在10天內(nèi)(含10天)完成任務(wù),為提高生產(chǎn)效率,工廠加班加點,接到任務(wù)的第一天就生產(chǎn)了空調(diào)42臺,以后每天生產(chǎn)的空調(diào)都比前一天多2臺,由于機器損耗等原因,當日生產(chǎn)的空調(diào)數(shù)量達到50臺后,每多生產(chǎn)一臺,當天生產(chǎn)的所有空調(diào),平均每臺成本就增加20元.

(1)設(shè)第天生產(chǎn)空調(diào)臺,直接寫出之間的函數(shù)解析式,并寫出自變量的取值范圍.

(2)若每臺空調(diào)的成本價(日生產(chǎn)量不超過50臺時)為2000元,訂購價格為每臺2920元,設(shè)第天的利潤為元,試求之間的函數(shù)解析式,并求工廠哪一天獲得的利潤最大,最大利潤是多少.

查看答案和解析>>

同步練習冊答案