已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(-2,0)、(x1,0),且1<x1<2,與y軸的正半軸的交點在(0,2)的下方.下列結(jié)論:
①4a―2b+c=0;
②a<b<0;
③2a+c>0;
④2a-b+1>0.
其中正確結(jié)論的個數(shù)是________個.
解析: 本題考查二次函數(shù)圖象的畫法、識別理解,方程根與系數(shù)的關(guān)系筀等知識和數(shù)形結(jié)合能力.根據(jù)題意畫大致圖象如圖所示,由y=ax2+bx+c與X軸的交點坐標(biāo)為(-2,0)得,即所以①正確;由圖象開口向下知,由與X軸的另一個交點坐標(biāo)為且,則該拋物線的對稱軸為由a<0得b>a,所以結(jié)論②正確,由一元二次方程根與系數(shù)的關(guān)系知,結(jié)合a<0得,所以③結(jié)論正確,由得,而0<c<2,∴∴-1<2a-b<0 ∴2a-b+1>0,所以結(jié)論④正確. 點撥:是否成立,也就是判斷當(dāng)時,的函數(shù)值是否為0;判斷中a符號利用拋物線的開口方向來判斷,開口向上a>0,開口向下a<0;判斷a、b的小關(guān)系時,可利用對稱軸的值的情況來判斷;判斷a、c的關(guān)系時,可利用由一元二次方程根與系數(shù)的關(guān)系的值的范圍來判斷;2a-b+1的值情況可用來判斷. |
科目:初中數(shù)學(xué) 來源:101網(wǎng)校同步練習(xí) 初三數(shù)學(xué) 華東師大(新課標(biāo)2001/3年初審) 華東師大版 題型:013
已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則函數(shù)y=ax+b的圖象只可能是選項中的
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2009年貴州黔東南州中考數(shù)學(xué)試卷 題型:044
已知二次函數(shù)y=x2+ax+a-2.
(1)求證:不論a為何實數(shù),此函數(shù)圖象與x軸總有兩個交點.
(2)設(shè)a<0,當(dāng)此函數(shù)圖象與x軸的兩個交點的距離為時,求出此二次函數(shù)的解析式.
(3)若此二次函數(shù)圖象與x軸交于A、B兩點,在函數(shù)圖象上是否存在點P,使得△PAB的面積為,若存在求出P點坐標(biāo),若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知二次函數(shù)y=x2+ax+a-2.
(1)求證:不論a為何實數(shù),此函數(shù)圖象與x軸總有兩個交點.
(2)設(shè)a<0,當(dāng)此函數(shù)圖象與x軸的兩個交點A、B的距離為時,求出此二次函數(shù)的解析式.
(3)若(2)中的條件不變,在函數(shù)圖象上是否存在點P,使得△PAB的面積為,若存在求出P點坐標(biāo),若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知二次函數(shù)y=x2+ax+a-2.
(1)求證:不論a為何實數(shù),此函數(shù)圖象與x軸總有兩個交點.
(2)設(shè)a<0,當(dāng)此函數(shù)圖象與x軸的兩個交點A、B的距離為時,求出此二次函數(shù)的解析式.
(3)若(2)中的條件不變,在函數(shù)圖象上是否存在點P,使得△PAB的面積為,若存在求出P點坐標(biāo),若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年北京四中初三第一學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:填空題
已知二次函數(shù)y=ax 2+bx+c圖象的一部分如圖,則a的取值范圍是____ __.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com