【題目】(1)判斷下列未知數(shù)的值是不是方程2x2+x-1=0的根.
x1=-1,x2=1,x3=.
(2)已知m是方程x2-x-2=0的一個根,求代數(shù)式m2-m的值.
【答案】(1)x1=-1和x3=是方程的根;(2)2.
【解析】
(1)利用方程解的定義找到相等關(guān)系.即將未知數(shù)分別代入方程式看是否成立.
(2)一元二次方程的根就是一元二次方程的解,就是能夠使方程左右兩邊相等的未知數(shù)的值;即用這個數(shù)代替未知數(shù)所得式子仍然成立;將m代入原方程即可求m2-m的值.
解:(1)當(dāng)x1=-1時,2x2+x-1=2-1-1=0,所以x1=-11是方程2x2+x-1=0的解;
當(dāng)x2=1時, 2x2+x-1=2+1-1=2,所以x2=1不是方程2x2+x-1=0的解;
當(dāng)x3=.時,2x2+x-1=+-1=0,所以x3=.是方程2x2+x-1=0的解.
(2)把x=m代入方程x2-x-2=0可得:m2-m-2=0,
即m2-m=2,
故m2-m的值為2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,池塘邊有一塊長為18m,寬為10m的長方形土地,現(xiàn)在將其 余三面留出寬都是xm的小路,中間余下的長方形部分做菜地,用整式表示:
(1)菜地的長a= m,寬b= m;
(2)菜地面積S= m2;
(3)當(dāng)x=0.5m時,菜地面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=6,AC=8,點D為邊BC的中點,點M為邊AB上的一動點,點N為邊AC上的一動點,且∠MDN=90°,則cos∠DMN為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,C、D是直線AB上兩點,∠1+∠2=180°,DE平分∠CDF,EF∥AB.
(1)求證:CE∥DF;
(2)若∠DCE=126°,求∠DEF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CA=CB,∠ACB=90°,AB=2,點D為AB的中點,以點D為圓心作圓心角為90°的扇形DEF,點C恰在弧EF上,則圖中陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某蔬菜生產(chǎn)基地用裝有恒溫系統(tǒng)的大棚栽培一種適宜生長溫度為15﹣20℃的新品種,如圖是某天恒溫系統(tǒng)從開啟到關(guān)閉及關(guān)閉后,大棚里溫度y(℃)隨時間x(h)變化的函數(shù)圖象,其中AB段是恒溫階段,BC段是雙曲線y= 的一部分,請根據(jù)圖中信息解答下列問題:
(1)求k的值;
(2)恒溫系統(tǒng)在一天內(nèi)保持大棚里溫度在15℃及15℃以上的時間有多少小時?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系xOy中,點A的坐標(biāo)為(0,1),取一點B(b,0),連接AB,做線段AB的垂直平分線l1 , 過點B作x軸的垂線l2 , 記l1 , l2的交點為P.
(1)當(dāng)b=3時,在圖1中補全圖形(尺規(guī)作圖,不寫作法,保留作圖痕跡);
(2)小慧多次取不同數(shù)值b,得出相應(yīng)的點P,并把這些點用平滑的曲線連接起來發(fā)現(xiàn):這些點P竟然在一條曲線L上!
①設(shè)點P的坐標(biāo)為(x,y),試求y與x之間的關(guān)系式,并指出曲線L是哪種曲線;
②設(shè)點P到x軸,y軸的距離分別是d1 , d2 , 求d1+d2的范圍,當(dāng)d1+d2=8時,求點P的坐標(biāo);
③將曲線L在直線y=2下方的部分沿直線y=2向上翻折,得到一條“W”形狀的新曲線,若直線y=kx+3與這條“W”形狀的新曲線有4個交點,直接寫出k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com