【題目】如圖,逆時針旋轉(zhuǎn)到,其中,點在同-直線上.
(1)旋轉(zhuǎn)中心是哪一點?
(2)旋轉(zhuǎn)了多少度?
(3)指出對應(yīng)線段、對應(yīng)角及對應(yīng)點.
【答案】旋轉(zhuǎn)中心點;轉(zhuǎn);詳見解析.
【解析】
(1)△AOC經(jīng)過旋轉(zhuǎn)得到△BOD,旋轉(zhuǎn)中心為點O;(2)線段OA的對應(yīng)線段為OB,旋轉(zhuǎn)角為∠AOB.根據(jù)已知條件即可求出旋轉(zhuǎn)度數(shù);(3)根據(jù)旋轉(zhuǎn)中心,即可確定對應(yīng)線段、對應(yīng)角及對應(yīng)點.
(1)依題意,△AOC經(jīng)過旋轉(zhuǎn)得到△BOD,
所以旋轉(zhuǎn)中心為點O,
(2)因為∠BOD=∠AOC,∠AOC=120°,點A、O、D在同一直線上.
所以∠AOB=180°-120°=60°.
因為線段OB的對應(yīng)線段為OA,
所以旋轉(zhuǎn)角為∠AOB=60°
(3)對應(yīng)角:∠A對應(yīng)∠ OBD; ∠C對應(yīng)∠D; ∠AOC對應(yīng)∠ BOD;
對應(yīng)線段:OA對應(yīng)OB;OC對應(yīng)OD;CA對應(yīng)DB;
對應(yīng)點:A對應(yīng) B; C對應(yīng)D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了推動球類運動的普及,成立多個球類運動社團,為此,學(xué)生會采取抽樣調(diào)查的方法,從足球、乒乓球、籃球、排球四個項目調(diào)查了若干名學(xué)生的興趣愛好(要求每位同學(xué)只能選擇其中一種自己喜歡的球類運動),并將調(diào)查結(jié)果繪制成了如下條形統(tǒng)計圖和扇形統(tǒng)計圖(不完整).請你根據(jù)圖中提供的信息,解答下列問題:
(1)本次抽樣調(diào)查,共調(diào)查了 名學(xué)生;
(2)請將條形統(tǒng)計圖和扇形統(tǒng)計圖補充完整;
(3)若該學(xué)校共有學(xué)生1800人,根據(jù)以上數(shù)據(jù)分析,試估計選擇排球運動的同學(xué)約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當今,青少年用電腦手機過多,視力水平下降已引起了全社會的關(guān)注,某校為了解八年級1000名學(xué)生的視力情況,從中抽查了150名學(xué)生的視力情況,通過數(shù)據(jù)處理,得到如下的頻數(shù)分布表.解答下列問題:
視力范圍分組 | 組中值 | 頻數(shù) |
3.95≤x<4.25 | 4.1 | 20 |
4.25≤x<4.55 | 4.4 | 10 |
4.55≤x<4.85 | 4.7 | 30 |
4.85≤x<5.15 | 5.0 | 60 |
5.15≤x<5.45 | 5.3 | 30 |
合計 | 150 |
(1)分別指出參加抽測學(xué)生的視力的眾數(shù)、中位數(shù)所在的范圍;
(2)若視力為4.85以上(含4.85)為正常,試估計該校八年級學(xué)生視力正常的人數(shù)約為多少?
(3)根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)時,統(tǒng)計中常用各組的組中值代表各組的實際數(shù)據(jù),把各組的頻數(shù)相應(yīng)組中的權(quán).請你估計該校八年級學(xué)生的平均視力是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小亮與小明做投骰子(質(zhì)地均勻的正方體)的實驗與游戲.
(1)在實驗中他們共做了50次試驗,試驗結(jié)果如下:
朝上的點數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
出現(xiàn)的次數(shù) | 10 | 9 | 6 | 9 | 8 | 8 |
填空:此次實驗中,“1點朝上”的頻率是 ;
② 小亮說:“根據(jù)試驗,出現(xiàn)1點朝上的概率最大.”他的說法正確嗎?為什么?
(2)小明也做了大量的同一試驗,并統(tǒng)計了“1點朝上”的次數(shù),獲得的數(shù)據(jù)如下表:
試驗總次數(shù) | 100 | 200 | 500 | 1000 | 2000 | 5000 | 10000 |
1點朝上的次數(shù) | 18 | 34 | 82 | 168 | 330 | 835 | 1660 |
1點朝上的頻率 | 0.180 | 0.170 | 0.164 | 0.168 | 0.165 | 0.167 | 0.166 |
“1點朝上”的概率的估計值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】銳銳參加我市電視臺組織的“牡丹杯”智力競答節(jié)目,答對最后兩道單選題就順利通關(guān),第一道單選題有3個選項,第二道單選題有4個選項,這兩道題銳銳都不會,不過銳銳還有兩個“求助”可以用(使用“求助”一次可以讓主持人去掉其中一題的一個錯誤選項).
(1)如果銳銳兩次“求助”都在第一道題中使用,那么銳銳通關(guān)的概率是________;
(2)如果銳銳兩次“求助”都在第二道題中使用,那么銳銳通關(guān)的概率是________;
(3)如果銳銳每道題各用一次“求助”,請用樹狀圖或者列表來分析他順利通關(guān)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是中線,E是AD的中點,過點A作AF∥BC交BE的延長線于F,連接CF.
(1)求證:AD=AF;
(2)如果AB=AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A,B,C三點在同一條數(shù)軸上.
(1)、若點A,B表示的數(shù)分別為-4,2,且BC=AB,則點C表示的數(shù)是 ;
(2)、點A,B表示的數(shù)分別為m,n,且m<n.
①若AC-AB=2,求點C表示的數(shù)(用含m,n的式子表示);
②點D是這條數(shù)軸上的一個動點,且點D在點A的右側(cè)(不與點B重合),當AD=2AC,BC=BD,求線段AD的長(用含m,n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=8,E是邊AB上一點,且AE=AB.⊙O經(jīng)過點E,與邊CD所在直線相切于點G(∠GEB為銳角),與邊AB所在直線交于另一點F,且EG:EF=.當邊AD或BC所在的直線與⊙O相切時,AB的長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)了“求簡單隨機事件發(fā)生的可能性大小”知識后,小敏,小聰,小麗三人分別編寫了一道有關(guān)隨機事件的試題并進行了解答.小敏,小聰,小麗編寫的試題分別是下面的(1)(2)(3).
(1)一個不透明的盒子里裝有4個紅球,2個白球,除顏色外其它都相同,攪均后,從中隨意摸出一個球,摸出紅球的可能性是多少?解:P(摸出一個紅球)=.
(2)口袋里裝有如圖所示的1角硬幣2枚、5角硬幣2枚、1 元硬幣1枚.攪均后,從中隨意摸出一枚硬幣,摸出1角硬幣的可能性是多少?解:P(摸出1角的硬幣)=.
(3)如圖,是一個轉(zhuǎn)盤,盤面上有5個全等的扇形區(qū)域,每個區(qū)域顯示有不同的顏色,輕輕轉(zhuǎn)動轉(zhuǎn)盤,當轉(zhuǎn)盤停止后,指針對準紅色區(qū)域的可能性是多少?解:P(指針對準紅色區(qū)域)=.
問題:根據(jù)以上材料回答問題:小敏,小聰,小麗三人中,誰編寫的試題及解答是正確的,并簡要說明其他兩人所編試題或解答的不足之處.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com