【題目】如圖,在四邊形AOBC中,若∠1=∠2,∠3+∠4=180°,則下列結(jié)論正確的有( 。
(1)A、O、B、C四點(diǎn)共圓
(2)AC=BC
(3)cos∠1=
(4)S四邊形AOBC=
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
【答案】D
【解析】
由圓內(nèi)接四邊形的判定定理得出A、O、B、C四點(diǎn)共圓,(1)正確;
作CD⊥OA于D,CE⊥OB于E,由角平分線的性質(zhì)得出CD=CE,證出∠CAD=∠4,由AAS證明△ACD≌△BCE,得出AD=BE,AC=BC,(2)正確;
由三角函數(shù)定義得出cos∠1+cos∠2=,即可得出(3)正確;
由三角形面積公式和三角函數(shù)得出S四邊形AOBC=,(4)正確;即可得出結(jié)論.
∵∠3+∠4=180°,
∴A、O、B、C四點(diǎn)共圓,(1)正確;
作CD⊥OA于D,CE⊥OB于E,如圖所示:
則∠CDA=∠CEB=90°,
∵∠1=∠2,
∴CD=CE,
∵∠3+∠4=180°,∠3+∠CAD=180°,
∴∠CAD=∠4,
在△ACD和△BCE中,,
∴△ACD≌△BCE(AAS),
∴AD=BE,AC=BC,(2)正確;
∵cos∠1=,cos∠2=,
∴cos∠1+cos∠2=,
∵∠1=∠2,
∴cos∠1=cos∠2,
∴2cos∠1=,
∴cos∠1=,(3)正確;
∵CD=CE,sin∠1=,
∴CD=c×sin∠1,
∴S四邊形AOBC=S△OAC+S△BOC=a×CD+b×CE=(a+b)CD=(a+b)×c×sin∠1=,(4)正確;
正確的結(jié)論有4個(gè),
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司每月生產(chǎn)產(chǎn)品A4萬(wàn)件和同類新型產(chǎn)品B若干萬(wàn)件.產(chǎn)品A每件銷售利潤(rùn)為200元,且在產(chǎn)品B銷售量每月不超過(guò)3萬(wàn)件時(shí),每月4萬(wàn)件產(chǎn)品A能全部銷售,產(chǎn)品B的每月銷售量y(萬(wàn)件)與每件銷售利潤(rùn)x(元)之間的函數(shù)關(guān)系圖象如圖所示.
(1)求y與x的函數(shù)關(guān)系式;
(2)在保證A產(chǎn)品全部銷售的情況下,產(chǎn)品B每件利潤(rùn)定為多少元時(shí)公司銷售產(chǎn)品A和產(chǎn)品B每月可獲得總利潤(rùn)w1(萬(wàn)元)最大?
(3)在不要求產(chǎn)品A全部銷售的情況下,已知受產(chǎn)品B銷售價(jià)的影響產(chǎn)品A每月銷售量:(萬(wàn)件)與x(元)之間滿足關(guān)系z=0.024x﹣3.2,那么產(chǎn)品B每件利潤(rùn)定為多少元時(shí),公司每月可獲得最大的利潤(rùn)?并求最大總利潤(rùn)w2(萬(wàn)元).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校初二年級(jí)數(shù)學(xué)考試,(滿分為100分,該班學(xué)生成績(jī)均不低于50分)作了統(tǒng)計(jì)分析,繪制成如圖頻數(shù)分布直方圖和頻數(shù)、頻率分布表,請(qǐng)你根據(jù)圖表提供的信息,解答下列問(wèn)題:
分組 | 49.5~59.5 | 59.5~69.5 | 69.5~79.5 | 79.5~89.5 | 89.5~100.5 | 合計(jì) |
頻數(shù) | 2 | a | 20 | 16 | 4 | 50 |
頻率 | 0.04 | 0.16 | 0.40 | 0.32 | b | 1 |
(1)頻數(shù)、頻率分布表中a= ,b= ;(答案直接填在題中橫線上)
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若該校八年級(jí)共有600名學(xué)生,且各個(gè)班級(jí)學(xué)生成績(jī)分布基本相同,請(qǐng)估計(jì)該校八年級(jí)上學(xué)期期末考試成績(jī)低于70分的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C、E在⊙O上,∠B=2∠ACE,在BA的延長(zhǎng)線上有一點(diǎn)P,使得∠P=∠BAC,弦CE交AB于點(diǎn)F,連接AE.
(1)求證:PE是⊙O的切線;
(2)若AF=2,AE=EF=,求OA的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小淇、小堯?qū)σ坏乐锌碱}目的部分解答.
題目:劉阿姨到超市購(gòu)買大米,第一次按原價(jià)購(gòu)買,用了105元.幾天后,遇上這種大米8折出售,她用140元又買了一些,兩次一共購(gòu)買了40kg.這種大米的原價(jià)是多少?
小淇:;小堯:.
根據(jù)以上信息,解答下列問(wèn)題.
(1)小淇同學(xué)所列方程中的x表示 ,小堯同學(xué)所列方程中的y表示 ;
(2)在上述兩個(gè)方程中任選一個(gè)求解,并回答題目中的問(wèn)題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,A點(diǎn)坐標(biāo)是(1,3),B點(diǎn)坐標(biāo)是(5,1),C點(diǎn)坐標(biāo)是(1,1)
(1)求△ABC的面積是____;
(2)求直線AB的表達(dá)式;
(3)一次函數(shù)y=kx+2與線段AB有公共點(diǎn),求k的取值范圍;
(4)y軸上有一點(diǎn)P且△ABP與△ABC面積相等,則P點(diǎn)坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了貫徹落實(shí)“精準(zhǔn)扶貧”精神,某單位決定運(yùn)送一批物資到某貧困村,貨車自早上8時(shí)出發(fā),行駛一段路程后發(fā)現(xiàn)未帶貨物清單,便立即以50km/h的速度回返,與此同時(shí)單位派車去送清單,途中相遇拿到清單后,貨車又立即掉頭并開(kāi)到目的地,整個(gè)過(guò)程中,貨車距離出發(fā)地的路程s(km)與行駛時(shí)間t(h)的函數(shù)圖象如圖所示.
(1)兩地相距 千米,當(dāng)貨車司機(jī)拿到清單時(shí),距出發(fā)地 千米.
(2)試求出途中BC段的函數(shù)表達(dá)式,并計(jì)算出中午12點(diǎn)時(shí),貨車離貧困村還有多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩班分別選5名同學(xué)組成代表隊(duì)參加學(xué)校組織的“國(guó)防知識(shí)”選拔賽,現(xiàn)根據(jù)成績(jī)(滿分10分)制作如圖統(tǒng)計(jì)圖和統(tǒng)計(jì)表(尚未完成)
甲、乙兩班代表隊(duì)成績(jī)統(tǒng)計(jì)表
平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | |
甲班 | 8.5 | 8.5 | a | 0.7 |
乙班 | 8.5 | b | 10 | 1.6 |
請(qǐng)根據(jù)有關(guān)信息解決下列問(wèn)題:
(1)填空:a= ,b= ;
(2)學(xué)校預(yù)估如果平均分能達(dá)8.5分,在參加市團(tuán)體比賽中即可以獲獎(jiǎng),現(xiàn)應(yīng)選派 代表隊(duì)參加市比賽;(填“甲”或“乙”)
(3)現(xiàn)將從成績(jī)滿分的3個(gè)學(xué)生中隨機(jī)抽取2人參加市國(guó)防知識(shí)個(gè)人競(jìng)賽,請(qǐng)用樹(shù)狀圖或列表法求出恰好抽到甲,乙班各一個(gè)學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為的直徑,P為BA延長(zhǎng)線上的一點(diǎn),D在上(不與點(diǎn)A,點(diǎn)B重合),連結(jié)PD交于點(diǎn)C,且PC=OB.設(shè),下列說(shuō)法正確的是( )
A. 若,則
B. 若 ,則
C. 若 ,則
D. 若 ,則
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com