【題目】如圖,直線y=k1x+1與雙曲線y=相交于P(1,m),Q(-2,-1)兩點.
(1)求m的值;
(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)為雙曲線上三點,且x1<x2<0<x3,請直接說明y1,y2,y3的大小關系;
(3)觀察圖象,請直接寫出不等式k1x+1>的解集.
【答案】(1) 2;(2) y2<y1<y3;(3)-2<x<0或x>1.
【解析】試題分析:(1)把把Q(-2,-1)代入反比例函數(shù)的解析式求得函數(shù)解析式,然后把P代入求得m的值;
(2)根據(jù)反比例函數(shù)的圖象,根據(jù)自變量的相對位置,結合圖象即可確定;
(3)不等式k1x+1>的解集就是對相同的x的值,一次函數(shù)的圖象在上邊的部分x的范圍.
試題解析:(1)∵雙曲線y=經(jīng)過點Q(-2,-1),∴k2=-2×(-1)=2,
∴雙曲線的解析式為y=
又∵點P(1,m)在雙曲線y=上,∴m==2.
(2)由A1(x1,y1),A2(x2,y2),A3(x3,y3)為雙曲線y=上的三點,且x1<x2<0<x3根據(jù)反比例函數(shù)的性質可得y2<y1<y3.
(3)由圖象可知不等式k1x+1>的解集為-2<x<0或x>1.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠A=45°,D是AC邊上一點,⊙O經(jīng)過D、A、B三點,OD∥BC.
(1)求證:BC與⊙O相切;
(2)若OD=15,AE=7,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】⑴ 閱讀理解:我們知道在直角三角形中,有無數(shù)組勾股數(shù),例如:5、12、13;9、40、41;……但其中也有一些特殊的勾股數(shù),例如:3、4、5;是三個連續(xù)正整數(shù)組成的勾股數(shù).
解決問題:① 在無數(shù)組勾股數(shù)中,是否存在三個連續(xù)偶數(shù)能組成勾股數(shù)?
答: ,若存在,試寫出一組勾股數(shù): .
② 在無數(shù)組勾股數(shù)中,是否還存在其它的三個連續(xù)正整數(shù)能組成勾股數(shù)?若存在,求出勾股數(shù),若不存在,說明理由.
③ 在無數(shù)組勾股數(shù)中,是否存在三個連續(xù)奇數(shù)能組成勾股數(shù)?若存在,求出勾股數(shù),若不存在,說明理由.
⑵ 探索升華:是否存在銳角△ABC三邊也為連續(xù)正整數(shù);且同時還滿足:∠B>∠C>∠A;∠ABC=2∠BAC?若存在,求出△ABC三邊的長;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】1876年,美國總統(tǒng)Garfield用如圖所示的兩個全等的直角三角形證明了勾股定理,若圖中,,,則下面結論錯誤的是( )
A. B. C. D. 是等腰直角三角形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與x軸交于A、B兩點,與y軸交于點C,其對稱軸交拋物線于點D,交x軸于點E,已知OB=OC=6.
(1)求拋物線的解析式及點D的坐標;
(2)連接BD,F(xiàn)為拋物線上一動點,當∠FAB=∠EDB時,求點F的坐標;
(3)平行于x軸的直線交拋物線于M、N兩點,以線段MN為對角線作菱形MPNQ,當點P在x軸上,且PQ=MN時,求菱形對角線MN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD內(nèi)接于⊙O,A是的中點,AE⊥AC于A,與⊙O及CB的延長線交于點F,E,且.
(1)求證:△ADC∽△EBA;
(2)如果AB=8,CD=5,求tan∠CAD的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】老師和小明同學玩數(shù)學游戲.老師取出一個不透明的口袋,口袋中裝有三張分別標有數(shù)字1,2,3的卡片,卡片除數(shù)字外其余都相同,老師要求小明同學兩次隨機抽取一張卡片,并計算兩次抽到卡片上的數(shù)字之積是奇數(shù)的概率.于是小明同學用畫樹狀圖的方法尋求他兩次抽取卡片的所有可能結果.如圖是小明同學所畫的正確樹狀圖的一部分.
(1)補全小明同學所畫的樹狀圖;
(2)求小明同學兩次抽到卡片上的數(shù)字之積是奇數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,BC是⊙O的直徑,∠ABC=30°,過點B作⊙O的切線BD,與CA的延長線交于點D,與半徑AO的延長線交于點E,過點A作⊙O的切線AF,與直徑BC的延長線交于點F.
(1)求證:△ACF∽△DAE;
(2)若S△AOC=,求DE的長;
(3)連接EF,求證:EF是⊙O的切線.
【答案】(1) 見解析; (2)3 ;(3)見解析.
【解析】試題分析:(1)根據(jù)圓周角定理得到∠BAC=90°,根據(jù)三角形的內(nèi)角和得到∠ACB=60°根據(jù)切線的性質得到∠OAF=90°,∠DBC=90°,于是得到∠D=∠AFC=30°由相似三角形的判定定理即可得到結論;
(2)根據(jù)S△AOC=,得到S△ACF=,通過△ACF∽△DAE,求得S△DAE=,過A作AH⊥DE于H,解直角三角形得到AH=DH=DE,由三角形的面積公式列方程即可得到結論;
(3)根據(jù)全等三角形的性質得到OE=OF,根據(jù)等腰三角形的性質得到∠OFG=(180°﹣∠EOF)=30°,于是得到∠AFO=∠GFO,過O作OG⊥EF于G,根據(jù)全等三角形的性質得到OG=OA,即可得到結論.
試題解析:(1)證明:∵BC是⊙O的直徑,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°
∵OA=OC,∴∠AOC=60°,∵AF是⊙O的切線,∴∠OAF=90°,∴∠AFC=30°,∵DE是⊙O的切線,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE;
(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF,∴OC=CF,∵S△AOC=,∴S△ACF=,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=BD,∴AF=BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴,∵△ACF∽△DAE,∴=,∴S△DAE=,過A作AH⊥DE于H,∴AH=DH=DE,∴S△ADE=DEAH=×=,∴DE=;
(3)∵∠EOF=∠AOB=120°,∴∠OEB=∠AFO,在△AOF與△BOE中,∵∠OBE=∠OAF,∠OEB=∠AFO,OA=OB,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,過O作OG⊥EF于G,∴∠OAF=∠OGF=90°,在△AOF與△OGF中,∵∠OAF=∠OGF,∠AFO=∠GFO,OF=OF,∴△AOF≌△GOF,∴OG=OA,∴EF是⊙O的切線.
【題型】解答題
【結束】
25
【題目】如圖,在平面直角坐標系中,O為原點,四邊形ABCO是矩形,點A,C的坐標分別是A(0,2)和C(2,0),點D是對角線AC上一動點(不與A,C重合),連結BD,作DE⊥DB,交x軸于點E,以線段DE,DB為鄰邊作矩形BDEF.
(1)填空:點B的坐標為 ;
(2)是否存在這樣的點D,使得△DEC是等腰三角形?若存在,請求出AD的長度;若不存在,請說明理由;
(3)①求證:;
②設AD=x,矩形BDEF的面積為y,求y關于x的函數(shù)關系式(可利用①的結論),并求出y的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】瞳瞳做一道數(shù)學題:求代數(shù)式當x=-1時的值,由于瞳瞳粗心把式子中的某一項前的“+”號錯誤地看成了“—”號,算出代數(shù)式的值是-11,那么瞳瞳看錯的是 次項前的符號,寫出x=-1和x=1時代數(shù)式的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com