【題目】海鮮門(mén)市的某種海鮮食材,成本為10元/千克,每天的進(jìn)貨量p(千克)與銷售價(jià)格x(元/千克)滿足函數(shù)關(guān)系式,從市場(chǎng)反饋的信息發(fā)現(xiàn),該海鮮食材每天的市場(chǎng)需求量q(千克)與銷售價(jià)格x(元/千克)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
銷售價(jià)格x(元/千克) | 10 | 12 | … | 30 |
市場(chǎng)需求量q(千克) | 30 | 28 | … | 10 |
(已知按物價(jià)部門(mén)規(guī)定銷售價(jià)格x不低于10元/千克且不高于30元/千克)
(1)請(qǐng)寫(xiě)出q與x的函數(shù)關(guān)系式:___________________________;
(2)當(dāng)每天的進(jìn)貨量小于或等于市場(chǎng)需求量時(shí),這種海鮮食材能全部售出,而當(dāng)每天的進(jìn)貨量大于市場(chǎng)需求量時(shí),只能售出符合市場(chǎng)需求量的海鮮食材,剩余的海鮮食材由于保質(zhì)期短而只能廢棄.
①求出每天獲得的利潤(rùn)y(元)與銷售價(jià)格x的函數(shù)關(guān)系式;
②為了避免浪費(fèi),每天要確保這種海鮮食材能全部售出,求銷售價(jià)格為多少元時(shí),每天獲得的利潤(rùn)(元)最大值是多少?
【答案】(1)q=-x +40 ;(2)①;②銷售價(jià)格為20元時(shí),每天獲得的利潤(rùn)最大值是200元
【解析】
(1)分析表中的變量關(guān)系可得q=-x +40;
(2)①分情況:,當(dāng)時(shí),;;當(dāng)時(shí),;
②要確保海鮮全部售出,所以p≤q,得,求函數(shù)最值可得.
解:(1)從表可得,q與x的函數(shù)關(guān)系式: q=-x +40
(2) ①,
當(dāng)時(shí),
,
當(dāng)時(shí),
綜上所述:
②要確保海鮮全部售出,所以p≤q
∴
∵,a>0,對(duì)稱軸
∴當(dāng)x=20時(shí),y取最大值
(元)
答:銷售價(jià)格為20元時(shí),每天獲得的利潤(rùn)最大值是200元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備從體育用品商店一次性購(gòu)買(mǎi)若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),若購(gòu)買(mǎi)3個(gè)足球和2個(gè)籃球共需310元,購(gòu)買(mǎi)2個(gè)足球和5個(gè)籃球共需500元。
(1)求購(gòu)買(mǎi)一個(gè)足球、一個(gè)籃球各需多少元?
(2)根據(jù)學(xué)校實(shí)際情況,需從體育用品商店一次性購(gòu)買(mǎi)足球和籃球共96個(gè),要求購(gòu)買(mǎi)足球和籃球的總費(fèi)用不超過(guò)5720元,這所中學(xué)最多可以購(gòu)買(mǎi)多少個(gè)籃球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)海軍亞丁灣護(hù)航十年,中國(guó)海軍被亞丁灣上來(lái)往的各國(guó)商船譽(yù)為“值得信賴的保護(hù)傘”.如圖,在一次護(hù)航行動(dòng)中,我國(guó)海軍監(jiān)測(cè)到一批可疑快艇正快速向護(hù)航的船隊(duì)靠近,為保證船隊(duì)安全,我國(guó)海軍迅速派出甲、乙兩架直升機(jī)分別從相距40海里的船隊(duì)首(點(diǎn))尾(點(diǎn))前去攔截,8分鐘后同時(shí)到達(dá)點(diǎn)將可疑快艇驅(qū)離.己知甲直升機(jī)每小時(shí)飛行180海里,航向?yàn)楸逼珫|,乙直升機(jī)的航向?yàn)楸逼?/span>,求乙直升機(jī)的飛行速度(單位:海里/小時(shí)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=2x與函數(shù)y=(x>0)的圖象交于點(diǎn)A(1,2).
(1)求m的值;
(2)過(guò)點(diǎn)A作x軸的平行線l,直線y=2x+b與直線l交于點(diǎn)B,與函數(shù)y=(x>0)的圖象交于點(diǎn)C,與x軸交于點(diǎn)D.
①若點(diǎn)C是線段BD的中點(diǎn)時(shí),則點(diǎn)C的坐標(biāo)是________,b的值是________;
②當(dāng)BC>BD時(shí),直接寫(xiě)出b的取值范圍________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為的等邊△ABC中,點(diǎn)D、E分別是邊BC、AC上兩個(gè)動(dòng)點(diǎn),且滿足AE=CD. 連接BE、AD相交于點(diǎn)P,則線段CP的最小值為( )
A.1B.2C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形的頂點(diǎn)、分別在軸,軸上,頂點(diǎn)在第二象限,點(diǎn)的坐標(biāo)為.將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)至線段,若反比例函數(shù)y=(k≠0)的圖象經(jīng)過(guò)A、D兩點(diǎn),則k值為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形中,是的中點(diǎn),以點(diǎn)為直角頂點(diǎn)的直角三角形的兩邊、始終與矩形、兩邊相交,,,
(1)如圖1,當(dāng)、分別過(guò)點(diǎn)、時(shí),求的大;
(2)在(1)的條件下,如圖2,將繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn),當(dāng)旋轉(zhuǎn)到與重合時(shí)停止轉(zhuǎn)動(dòng).若、分別與、相交于點(diǎn)、.
①在旋轉(zhuǎn)過(guò)程中,四邊形的面積是否發(fā)生變化?若不變,求四邊形的面積;若要變,請(qǐng)說(shuō)明理由.
②如圖3,設(shè)點(diǎn)為的中點(diǎn),連結(jié)、,若,當(dāng)的長(zhǎng)度最小時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為了測(cè)出旗桿AB的高度,在旗桿前的平地上選擇一點(diǎn)C,測(cè)得旗桿頂部A的仰角為45°,在C、B之間選擇一點(diǎn)D(C、D、B三點(diǎn)共線),測(cè)得旗桿頂部A的仰角為75°,且CD=8m.
(1)求點(diǎn)D到CA的距離;
(2)求旗桿AB的高.
(注:結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年植樹(shù)節(jié),某中學(xué)組織師生開(kāi)展植樹(shù)造林活動(dòng),為了解全校800名學(xué)生的植樹(shù)情況,隨機(jī)抽樣調(diào)查50名學(xué)生的植樹(shù)情況,制成如下統(tǒng)計(jì)表和條形統(tǒng)計(jì)圖.
(1)求的值,并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)求從50名學(xué)生中任意抽取一名,植樹(shù)數(shù)量恰好等于中位數(shù)的概率;
(3)估計(jì)該校800名學(xué)生中,植樹(shù)數(shù)量不少于4棵的人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com