【題目】若代數(shù)式x2+3x-5的值為2,則代數(shù)式-2x2-6x+9的值為_____________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)小球從點(diǎn)A(3,3)出發(fā),經(jīng)過(guò)y軸上點(diǎn)C反彈后經(jīng)過(guò)點(diǎn)B(1,0),則小球從A點(diǎn)經(jīng)過(guò)點(diǎn)C到B點(diǎn)經(jīng)過(guò)的最短路線長(zhǎng)是( )
A.4 B.5 C.6 D.7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,D是BC的中點(diǎn),AC的垂直平分線分別交AC、AD、AB于點(diǎn)E、O、F,則圖中全等三角形的對(duì)數(shù)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD和正方形AEFG有公共頂點(diǎn)A,將正方形AEFG繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)角∠DAG=α,其中0°≤α≤180°,連結(jié)DF,BF,如圖.
(1)若α=0°,則DF=BF,請(qǐng)加以證明;
(2)試畫(huà)一個(gè)圖形(即反例),說(shuō)明(1)中命題的逆命題是假命題;
(3)對(duì)于(1)中命題的逆命題,如果能補(bǔ)充一個(gè)條件后能使該逆命題為真命題,請(qǐng)直接寫(xiě)出你認(rèn)為需要補(bǔ)充的一個(gè)條件,不必說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明家與學(xué)校在同一直線上且相距720m,一天早上他和弟弟都勻速步行去上學(xué),弟弟走得慢,先走1分鐘后,小明才出發(fā),已知小明的速度是80m/分,以小明出發(fā)開(kāi)始計(jì)時(shí),設(shè)時(shí)間為x(分),兄弟兩人之間的距離為ym,圖中的折線是y與x的函數(shù)關(guān)系的部分圖象,根據(jù)圖象解決下列問(wèn)題:
(1)弟弟步行的速度是 m/分,點(diǎn)B的坐標(biāo)是 ;
(2)線段AB所表示的y與x的函數(shù)關(guān)系式是 ;
(3)試在圖中補(bǔ)全點(diǎn)B以后的圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】汽車(chē)公司有甲、乙兩種貨車(chē)可供租用,現(xiàn)有一批貨物要運(yùn)往某地,貨主準(zhǔn)備租用該公司貨車(chē),已知以往甲、乙兩種貨車(chē)運(yùn)貨情況如下表:
第一次 | 第二次 | |
甲種貨車(chē)(輛) | 2 | 5 |
乙種貨車(chē)(輛) | 3 | 6 |
累計(jì)運(yùn)貨(噸) | 13 | 28 |
(1)甲、乙兩種貨車(chē)每輛可裝多少噸貨物?
(2)若貨主需要租用該公司的甲種貨車(chē)8輛,乙種貨車(chē)6輛,剛好運(yùn)完這批貨物,如按每噸付運(yùn)費(fèi)50元,則貨主應(yīng)付運(yùn)費(fèi)總額為多少元?
(3)若貨主共有20噸貨,計(jì)劃租用該公司的貨車(chē)正好(每輛車(chē)都滿載)把這批貨運(yùn)完,該汽車(chē)公司共有哪幾種運(yùn)貨方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(Ⅰ)(1)問(wèn)題引入
如圖①,在△ABC中,點(diǎn)O是∠ABC和∠ACB平分線的交點(diǎn),若∠A=α,則∠BOC= (用α表示);
(2)拓展研究
如圖②,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,試求∠BOC的度數(shù) (用α表示).(3)歸納猜想
若BO、CO分別是△ABC的∠ABC、∠ACB的n等分線,它們交于點(diǎn)O,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,則∠BOC= (用α表示).
(Ⅱ)類比探索
(1)特例思考
如圖③,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,求∠BOC的度數(shù)(用α表示).
(2)一般猜想
若BO、CO分別是△ABC的外角∠DBC、∠ECB的n等分線,它們交于點(diǎn)O,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,請(qǐng)猜想∠BOC= (用α表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列各式:﹣1+2=1;﹣1+2﹣3+4=2;﹣1+2﹣3+4﹣5+6=3…那么﹣5+6﹣7+8﹣9+10﹣…﹣2015+2016﹣2017+2018=__.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com