【題目】今年519日為第29全國助殘日.我市某中學組織了獻愛心捐款活動,該校數(shù)學課外活動小組對本次捐款活動做了一次抽樣調查,并繪制了如下不完整的頻數(shù)分布表和頻數(shù)分布直方圖(每組含前一個邊界,不含后一個邊界).

1)填空:__________________

2)補全頻數(shù)分布直方圖.

3)該校有2000名學生,估計這次活動中愛心捐款額在的學生人數(shù).

【答案】(1).(2)補圖見解析;(31200.

【解析】

1)先根據(jù)5xl0的頻數(shù)及其百分比求出樣本容量,再根據(jù)各組頻數(shù)之和等于總人數(shù)求出a的值,繼而由百分比的概念求解可得;

2)根據(jù)所求數(shù)據(jù)補全圖形即可得;

3)利用樣本估計總體思想求解可得.

解:(1)∵樣本容量為3÷7.5%=40,

a=40-3+7+10+6=14,

b=14÷40×100%=35%,

故答案為:14,35%

2)補圖如下.

3)估計這次活動中愛心捐款額在15≤x25的學生人數(shù)約為,

2000×35%+25%=1200(人).

答:估計這次活動中愛心捐款額在的學生有1200人.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校為美化校園,計劃對面積為1800m2的區(qū)域進行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400 m2區(qū)域的綠化時,甲隊比乙隊少用4.

1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2?

2)若學校每天需付給甲隊的綠化費用是0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應安排甲隊工作多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點,點,直線軸于點

(1)求直線的表達式和點的坐標;

(2)在直線上有一點,使得的面積為4,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將△ABC放在每個小正方形的邊長為1的網(wǎng)格中,點A、點B、點C均落在格點上.

(I)計算△ABC的邊AC的長為_____

(II)P、Q分別為邊AB、AC上的動點,連接PQ、QB.當PQ+QB取得最小值時,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出線段PQ、QB,并簡要說明點P、Q的位置是如何找到的_____(不要求證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC△ADC都是等邊三角形E,F同時分別從點B,A出發(fā),以相同的速度各自沿BAAD的方向運動到點A,D停止連結EC,FC.

(1)在點EF運動的過程中,∠ECF的大小是否隨之變化?請說明理由

(2)在點E,F運動的過程中,A,E,C,F為頂點的四邊形的面積變化了嗎?請說明理由

(3)連結EF在圖中找出所有和∠ACE相等的角,并說明理由

(4)若點E,F在射線BA射線AD上繼續(xù)運動下去,(1)中的結論還成立嗎?直接寫出結論,不必說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,點軸上,點坐標為。

1)求點軸的距離;

2)連接,當時,求點的坐標;

3)在(2)的條件下,猜想線段和線段的數(shù)量關系,并說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知BD平分∠ABF,且交AE于點D.

(1)求作:∠BAE的平分線AP(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);

(2)設AP交BD于點O,交BF于點C,連接CD,當AC⊥BD時,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在學習等邊三角形時發(fā)現(xiàn)了直角三角形的一個性質:直角三角形中,角所對的直角邊等于斜邊的一半。小明同學對以上結論作了進一步探究.如圖1,在中,,則:.

探究結論:(1)如圖1邊上的中線,易得結論:________三角形.

2)如圖2,在中,邊上的中線,點是邊上任意一點,連接,在邊上方作等邊,連接.試探究線段之間的數(shù)量關系,寫出你的猜想加以證明.

拓展應用:如圖3,在平面直角坐標系中,點的坐標為,點軸正半軸上的一動點,以為邊作等邊,當點在第一象內,且時,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=﹣(x﹣a)(x﹣b),其中a<b,m、n(m<n)是方程1﹣(x﹣a)(x﹣b)=0的兩個根,則實數(shù)a、b、m、n的大小關系是( 。

A. a<m<n<b B. m<a<b<n C. a<m<b<n D. m<a<n<b

查看答案和解析>>

同步練習冊答案