【題目】 已知,如圖,點(diǎn)D是△ABC的邊AB的中點(diǎn),四邊形BCED是平行四邊形.

1)求證:四邊形ADCE是平行四邊形;

2)在△ABC中,若ACBC,則四邊形ADCE   ;(只寫結(jié)論,不需證明)

3)在(2)的條件下,當(dāng)ACBC時(shí),求證:四邊形ADCE是正方形.

【答案】(1)證明見解析;(2)矩形;(3)證明見解析.

【解析】

(1)證明是平行四邊形的方法有很多,此題用一組對(duì)邊平行且相等較為簡(jiǎn)單,在平行四邊形的基礎(chǔ)上只需一個(gè)角是直角即可.

(2)根據(jù)矩形的判定解答即可.

(3)根據(jù)正方形的判定解答即可.

證明:(1)∵四邊形BCED是平行四邊形,

BDCEBDCE;

DAB的中點(diǎn),

ADBD

ADCE;

又∵BDCE

∴四邊形ADCE是平行四邊形.

(2)在△ABC中,若ACBC,則四邊形ADCE是矩形,

故答案為:矩形;

(3)ACBC,

∴∠ACB90°;

∵在RtABC中,DAB的中點(diǎn),

CDADAB;

∵在△ABC中,ACBC,DAB的中點(diǎn),

CDAB,

∴∠ADC90°;

∴平行四邊形ADCE是正方形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解青少年形體情況,現(xiàn)隨機(jī)抽查了某市若干名初中學(xué)生坐姿、站姿、走姿的好壞情況.我們對(duì)測(cè)評(píng)數(shù)據(jù)作了適當(dāng)處理(如果一個(gè)學(xué)生有一種以上不良姿勢(shì),以他最突出的一種作記載),并將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中所給信息解答下列問題:

(1)請(qǐng)將兩幅統(tǒng)計(jì)圖補(bǔ)充完整;

(2)請(qǐng)問這次被抽查形體測(cè)評(píng)的學(xué)生一共是多少人?

(3)如果全市有5萬名初中生,那么全市初中生中,坐姿和站姿不良的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為,點(diǎn)B坐標(biāo)為滿足.

1)若沒有平方根,判斷點(diǎn)A在第幾象限并說明理由;

2)若點(diǎn)A軸的距離是點(diǎn)B軸距離的3倍,求點(diǎn)B的坐標(biāo);

3)點(diǎn)D的坐標(biāo)為(4,-2),OAB的面積是DAB面積的2倍,求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正比例函數(shù)與反比例函數(shù)的圖象分別交于A、C兩點(diǎn),已知點(diǎn)B與點(diǎn)D關(guān)于坐標(biāo)原點(diǎn)O成中心對(duì)稱,且點(diǎn)B的坐標(biāo)為其中

四邊形ABCD的是______填寫四邊形ABCD的形狀

當(dāng)點(diǎn)A的坐標(biāo)為時(shí),四邊形ABCD是矩形,求m,n的值.

試探究:隨著km的變化,四邊形ABCD能不能成為菱形?若能,請(qǐng)直接寫出k的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矗立在蓮花山的鄧小平雕像氣宇軒昂,這是中國(guó)第一座以城市雕塑形式豎立的鄧小平雕像。銅像由像體AD和底座CD兩部分組成。某校數(shù)學(xué)課外小組在地面的點(diǎn)B處測(cè)得點(diǎn)A的仰角∠ABC=67°,點(diǎn)D的仰角∠DBC=30°,已知CD=2米,求像體AD的高度。(最后結(jié)果精確到1米,參考數(shù)據(jù):sin67°≈0.92,cos67°≈0.39,tan67°≈2.4,≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某段河流的兩岸是平行的,數(shù)學(xué)興趣小組在老師帶領(lǐng)下不用涉水過河就測(cè)得河的寬度,他們是這樣做的:

①在河流的一側(cè)岸邊B點(diǎn),選對(duì)岸正對(duì)的一棵樹A

②沿河岸直走20米有一樹C,繼續(xù)前行20米到達(dá)D處;

③從D處沿與河岸垂直的方向行走,當(dāng)?shù)竭_(dá)A樹正好被C樹遮擋住的E處停止行走;

④測(cè)得DE的長(zhǎng)為5米.

求河流的寬度是多少?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的是用棋子擺成的“”字形圖案.

1)填寫下表:

圖案序號(hào)

每個(gè)圖案中棋子的個(gè)數(shù)

5

8

2)第個(gè)“”字形圖案中棋子的個(gè)數(shù)為______.(用含的代數(shù)式表示)

3)第20個(gè)“”字形圖案共有棋子多少個(gè)?

4)計(jì)算前20個(gè)“”字形圖案中棋子的總個(gè)數(shù)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某鄉(xiāng)村距城市50km,甲騎自行車從鄉(xiāng)村出發(fā)進(jìn)城,出發(fā)1小時(shí)30分后,乙騎摩托車也從鄉(xiāng)村出發(fā)進(jìn)城,結(jié)果比甲先到1小時(shí),已知乙的速度是甲的2.5倍,求甲、乙兩人的速度。

【答案】甲速12km/h,乙速30km/h.

【解析】試題分析:設(shè)甲的速度是則乙的速度是甲、乙所用時(shí)間分別為: 小時(shí)、小時(shí);根據(jù)題意可得甲比乙多用2.5小時(shí),從而可得關(guān)于的方程,解方程即可解答此題;注意,最后要結(jié)合題意驗(yàn)根.

試題解析:設(shè)甲的速度是則乙的速度是 根據(jù)題意列方程,

整理,

解得

經(jīng)檢驗(yàn), 是原方程的解.

:甲的速度是12km/h,乙的速度是30km/h.

型】解答
結(jié)束】
24

【題目】已知的值 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=AC,BAC=90°,點(diǎn)D在射線BC上(與B、C兩點(diǎn)不重合),以AD為邊作正方形ADEF,使點(diǎn)E與點(diǎn)B在直線AD的異側(cè),射線BA與直線CF相交于點(diǎn)G.

(1)若點(diǎn)D在線段BC上,如圖(1),判斷:線段BC與線段CG的數(shù)量關(guān)系:   ,位置關(guān)系:   

(2)如圖(2),①若點(diǎn)D在線段BC的延長(zhǎng)線上,(1)中判斷線段BC與線段CG的數(shù)量關(guān)系與位置關(guān)系是否仍然成立,并說明理由;

②當(dāng)GCF中點(diǎn),連接GE,若AB=,求線段GE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案