在平面直角坐標(biāo)系中,將拋物線繞著它與y軸的交點旋轉(zhuǎn)180°,所得拋物線的解析式為                     

(頂點式為).

解析試題分析: ∵,∴頂點坐標(biāo)為(﹣1,2),當(dāng)x=0時,y=3,∴與y軸的交點坐標(biāo)為(0,3),∴旋轉(zhuǎn)180°后的對應(yīng)頂點的坐標(biāo)為(1,4),∴旋轉(zhuǎn)后的拋物線解析式為,即
考點: 二次函數(shù)圖象與幾何變換.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

如果拋物線與拋物線關(guān)于軸對稱,則=        ,=       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

某果園有100棵橘子樹,平均每一棵樹結(jié)600個橘子.根據(jù)經(jīng)驗估計,每多種一棵樹,平均每棵樹就會少結(jié)5個橘子.設(shè)果園增種x棵橘子樹,果園橘子總個數(shù)為y個,則果園里增種      棵橘子樹,橘子總個數(shù)最多.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

已知直線y=b(b為實數(shù))與函數(shù) y= 的圖像至少有三個公共點,則實數(shù)b的取值范圍             .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖,拋物線與x軸正半軸交于點A(3,0).以O(shè)A為邊在x軸上方作正方形OABC,延長CB交拋物線于點D,再以BD為邊向上作正方形BDEF,.則a=    ,點E的坐標(biāo)是         .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

拋物線的頂點坐標(biāo)是          

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖(1)是一個橫斷面為拋物線形狀的拱橋,當(dāng)水面在l時,拱頂(拱橋洞的最高點)離水面2m,水面寬4m.如圖(2)建立平面直角坐標(biāo)系,則拋物線的關(guān)系式是       .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖,以扇形OAB的頂點O為原點,半徑OB所在的直線為x軸,建立平面直角坐標(biāo)系,點B的坐標(biāo)為(2,0),若拋物線與扇形OAB的邊界總有兩個公共點,則實數(shù)k的取值范圍是
    .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線與x軸交于A,B兩點,對稱軸為直線,直線AD交拋物線于點D(2,3).

(1)求拋物線的解析式;
(2)已知點M為第三象限內(nèi)拋物線上的一動點,當(dāng)點M在什么位置時四邊形AMCO的面積最大?并求出最大值;
(3)當(dāng)四邊形AMCO面積最大時,過點M作直線平行于y軸,在這條直線上是否存在一個以Q點為圓心,OQ為半徑且與直線BC相切的圓?若存在,求出圓心Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案