【題目】如圖,已知在平面直角坐標系xOy中,RtOAB的直角頂點Bx軸的正半軸上,點A在第一象限,反比例函數(shù)yx0)的圖象經(jīng)過OA的中點C.交AB于點D,連結CD.若ACD的面積是2,則k的值是_____

【答案】

【解析】

作輔助線,構建直角三角形,利用反比例函數(shù)k的幾何意義得到SOCE=SOBD=k,根據(jù)OA的中點C,利用△OCE∽△OAB得到面積比為14,代入可得結論.

解:連接OD,過CCEAB,交x軸于E,

∵∠ABO90°,反比例函數(shù)yx0)的圖象經(jīng)過OA的中點C,

SCOESBOD,SACDSOCD2,

CEAB

∴△OCE∽△OAB,

,

4SOCESOAB,

k2+2+k,

k,

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,等腰RtABC與等腰RtCDE關于原點O成位似關系,相似比為13,∠ACB=∠CED90°,A、C、Ex軸正半軸上的點,B、D是第一象限的點,BC2,則點D的坐標是( 。

A.9,6B.8,6C.6,9D.6,8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,∠BAD和∠BCD的平分線AE,CF分別交DCBA的延長線于點E,F,交邊BC,AD于點H,G

(1)求證:四邊形AECF是平行四邊形.

(2)若AB=5,BC=8,求AF+AG的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,由兩個長為2,寬為1的長方形組成“7”字圖形.

1)將一個“7”字圖形按如圖擺放在平面直角坐標系中,記為“7”字圖形,其中頂點位于軸上,頂點,位于軸上,為坐標原點,則的值為____.

2)在(1)的基礎上,繼續(xù)擺放第二個“7”字圖形得頂點,擺放第三個“7”字圖形得頂點,依此類推,,擺放第“7”字圖形得頂點,,則頂點的坐標為_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】20179月,我國中小學生迎來了新版教育部統(tǒng)編義務教育語文教科書,本次統(tǒng)編本教材最引人關注的變化之一是強調(diào)對傳統(tǒng)文化經(jīng)典著作的閱讀,某校對A《三國演義》、B《紅樓夢》、C《西游記》、D《水滸》四大名著開展最受歡迎的傳統(tǒng)文化經(jīng)典著作調(diào)查,隨機調(diào)查了若干名學生(每名學生必選且只能選這四大名著中的一部)并將得到的信息繪制了下面兩幅不完整的統(tǒng)計圖:

(1)本次一共調(diào)查了   名學生;

(2)請將條形統(tǒng)計圖補充完整;

(3)某班語文老師想從這四大名著中隨機選取兩部作為學生暑期必讀書籍,請用樹狀圖或列表的方法求恰好選中《三國演義》和《紅樓夢》的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在平面直角坐標系xOy中,拋物線y=﹣x2+bx+c(c0)的頂點為D,與y軸的交點為C.過點C的直線CA與拋物線交于另一點A(點A在對稱軸左側),點BAC的延長線上,連結OA,OB,DADB

(1)如圖1,當ACx軸時,

①已知點A的坐標是(﹣2,1),求拋物線的解析式;

②若四邊形AOBD是平行四邊形,求證:b24c

(2)如圖2,若b=﹣2,,是否存在這樣的點A,使四邊形AOBD是平行四邊形?若存在,求出點A的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AD4,將∠A向內(nèi)翻析,點A落在BC上,記為A1,折痕為DE.若將∠B沿EA1向內(nèi)翻折,點B恰好落在DE上,記為B1,則AB_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸交于兩點,是以點為圓心,2為半徑的圓上的動點,是線段的中點,連結.則線段的最大值是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,設二次函數(shù)y1x2+bx+a,y2ax2+bx+1a,b是實數(shù),a≠0).

1)若函數(shù)y1的對稱軸為直線x3,且函數(shù)y1的圖象經(jīng)過點(a,b),求函數(shù)y1的表達式.

2)若函數(shù)y1的圖象經(jīng)過點(r0),其中r≠0,求證:函數(shù)y2的圖象經(jīng)過點(0).

3)設函數(shù)y1和函數(shù)y2的最小值分別為mn,若m+n0,求m,n的值.

查看答案和解析>>

同步練習冊答案