【題目】x232互為相反數(shù),則x的值為__

【答案】±1

【解析】

直接利用相反數(shù)的定義得出一元二次方程,然后用直接開(kāi)平方法求解.

x232互為相反數(shù),

x23+20

解得:x±1

故答案為:±1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示為一幾何體的三視圖:
(1)寫(xiě)出這個(gè)幾何體的名稱;
(2)任意畫(huà)出這個(gè)幾何體的一種表面展開(kāi)圖;
(3)若長(zhǎng)方形的高為10cm,正三角形的邊長(zhǎng)為4cm,求這個(gè)幾何體的側(cè)面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,線段AD=10cm,點(diǎn)B,C都是線段AD上的點(diǎn),且AC=7cm,BD=4cm,若E,F(xiàn)分別是線段AB,CD的中點(diǎn),求BC與EF的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答
(1)如圖,在直線m的同側(cè)有A,B兩點(diǎn),在直線m上找點(diǎn)P,Q,使PA+PB最小,|QB﹣QA|最大(保留作圖痕跡)

(2)平面直角坐標(biāo)系內(nèi)有兩點(diǎn)A(2,3),B(4,5),請(qǐng)分別在x軸,y軸上找點(diǎn)P,Q,使PA+PB最小,|QB﹣QA|最大,則點(diǎn)P,Q的坐標(biāo)分別為 ,
(3)代數(shù)式 + 的最小值是 , 此時(shí)x=
(4)代數(shù)式 的最大值是 , 此時(shí)x=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】方程x22x30經(jīng)過(guò)配方法化為(x+a2b的形式,正確的是(  )

A. x124B. x+14C. x1216D. x+1216

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某探測(cè)隊(duì)在地面A、B兩處均探測(cè)出建筑物下方C處有生命跡象,已知探測(cè)線與地面的夾角分別是25°和60°,且AB=4米,求該生命跡象所在位置C的深度.(結(jié)果精確到1米.參考數(shù)據(jù):sin25°≈0.4,cos25°≈0.9,tan25°≈0.5, ≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解為x=﹣3的方程是(
A.3x﹣2=﹣7
B.3x+2=﹣11
C.2x+6=0
D.x﹣3=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線經(jīng)過(guò)點(diǎn)C(-2,6),

與x軸相交于A、B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)D.

(1)求點(diǎn)A的坐標(biāo);

(2)設(shè)直線BC交y軸于點(diǎn)E,連接AE、AC,求證:是等腰直角三角形;

(3)連接AD交BC于點(diǎn)F,試問(wèn)當(dāng)時(shí),在拋物線上是否存在一點(diǎn)P使得以A、B、P為頂點(diǎn)的三角形與相似?若存在, 請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,△A′B′C′是△ABC經(jīng)過(guò)平移得到的,A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),△ABC中任意一點(diǎn)P(x1 , y1)平移后的對(duì)應(yīng)點(diǎn)為P′(x1+6,y1+4).

(1)請(qǐng)寫(xiě)出三角形ABC平移的過(guò)程;
(2)分別寫(xiě)出點(diǎn)A′,B′,C′的坐標(biāo);
(3)求△A′B′C′的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案