【題目】已知,矩形中,,點(diǎn)分別在邊上,直線交矩形對(duì)角線于點(diǎn),將沿直線翻折,點(diǎn)落在點(diǎn)處,且點(diǎn)在射線上。

Ⅰ.如圖①,當(dāng)時(shí),①求證;②求的長;

Ⅱ.請(qǐng)寫出線段的長的取值范圍,及當(dāng)的長最大時(shí)的長。

【答案】Ⅰ. ①見解析;②;Ⅱ.0≤CP≤5,

【解析】

Ⅰ. ①先由折疊得出∠AEM=PEM,AE=PE,再根據(jù)已知判斷出ABEP,進(jìn)而判斷出CN=CE,②設(shè)CN=CE=x,先根據(jù)勾股定理求出AC的長,再根據(jù)ABEP證出CPECAB,從而得到比例式即可.

Ⅱ. 先確定出PC最大和最小時(shí)的位置,即可得出PC的范圍,最后用折疊的性質(zhì)和勾股定理即可得出結(jié)論.

解:Ⅰ. ①∵△AME沿直線MN翻折,點(diǎn)A落在點(diǎn)P處,
∴△AME≌△PME
∴∠AEM=PEMAE=PE
ABCD是矩形,∴ABBC
EPBC,∴ABEP
∴∠AME=PEM
∴∠AEM=AME
AM=AE
ABCD是矩形,∴ABDC
.∴CN=CE,
②設(shè)CN=CE=x
ABCD是矩形,AB=4,BC=3,
∴根據(jù)勾股定理得AC=5.∴PE=AE=5-x
EPBC,ABEP
CPECAB

==

x=,
CN=

Ⅱ. ∵四邊形ABCD是矩形,
∴∠ABC=90°,AC=5,
由折疊知,AE=PE,
由三角形的三邊關(guān)系得,PE+CEPC,
ACPC
PC5,
∴點(diǎn)EAC中點(diǎn)時(shí),PC最小為0,當(dāng)點(diǎn)E和點(diǎn)C重合時(shí),PC最大為AC=5,
0≤CP≤5

如圖,當(dāng)點(diǎn)C,N,E重合時(shí),PC=BC+BP=5,

BP=2,
由折疊知,PM=AM,
RtPBM中,PM=4-BM,根據(jù)勾股定理得,PM2-BM2=BP2,
∴(4-BM2-BM2=4
BM=,

RtBCM中,根據(jù)勾股定理得,MN=

當(dāng)CP最大時(shí)MN=,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了節(jié)能減排,我市某校準(zhǔn)備購買某種品牌的節(jié)能燈,已知3A型節(jié)能燈和5B型節(jié)能燈共需50元,2A型節(jié)能燈和3B型節(jié)能燈共需31元.

1)求1A型節(jié)能燈和1B型節(jié)能燈的售價(jià)各是多少元?

2)學(xué)校準(zhǔn)備購買這兩種型號(hào)的節(jié)能燈共200只,要求A型節(jié)能燈的數(shù)量不超過B型節(jié)能燈的數(shù)量的3倍,請(qǐng)?jiān)O(shè)計(jì)出最省錢的購買方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A4,0),以OA為對(duì)角線作正方形ABOC,若將拋物線y=x2沿射線OC平移得到新拋物線y=x-m2+km0).則當(dāng)新拋物線與正方形的邊AB有公共點(diǎn)時(shí),m的值一定是(

A. 2,6,8B. 0<m≤6C. 0<m≤8D. 0<m≤2 6 ≤ m≤8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織學(xué)生參加安全知識(shí)競賽(滿分為分),測(cè)試結(jié)束后,張老師從七年級(jí)名學(xué)生中隨機(jī)地抽取部分學(xué)生的成績繪制了條形統(tǒng)計(jì)圖,如圖所示.試根據(jù)統(tǒng)計(jì)圖提供的信息,回答下列問題:

1)張老師抽取的這部分學(xué)生中,共有 名男生, 名女生;

2)張老師抽取的這部分學(xué)生中,女生成績的眾數(shù)是 ;

3)若將不低于分的成績定為優(yōu)秀,請(qǐng)估計(jì)七年級(jí)名學(xué)生中成績?yōu)閮?yōu)秀的學(xué)生人數(shù)大約是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組請(qǐng)結(jié)合題意填空,完成本題的解答、

I)解不等式①,得    

II)解不等式②,得     

III)把不等式①和②的解集在數(shù)軸上表示出來:

IV)原不等式組的解集為    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),為常數(shù))的圖象經(jīng)過點(diǎn).

1)求滿足的關(guān)系式;

2)設(shè)該函數(shù)圖象的頂點(diǎn)坐標(biāo)是,當(dāng)的值變化時(shí),求關(guān)于的函數(shù)解析式;

3)若該函數(shù)的圖象不經(jīng)過第三象限,當(dāng)時(shí),函數(shù)的最大值與最小值之差為16,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為a,點(diǎn)E在邊AB上運(yùn)動(dòng)(不與點(diǎn)A,B重合),∠DAM=45°,點(diǎn)F在射線AM上,且,CFAD相交于點(diǎn)G,連接EC,EFEG,則下列結(jié)論:①∠ECF=45°;②的周長為;③ ;④的面積的最大值.其中正確的結(jié)論是____.(填寫所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給出以下命題:

①平分弦的直徑垂直于這條弦;

②已知點(diǎn)、均在反比例函數(shù)的圖象上,則;

③若關(guān)于x的不等式組無解,則

④將點(diǎn)向左平移3個(gè)單位到點(diǎn),再將繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°到點(diǎn),則的坐標(biāo)為

其中所有真命題的序號(hào)是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖像交坐標(biāo)軸于A-1,0),B4,0),C0,-4)三點(diǎn),點(diǎn)P是直線BC下方拋物線上一動(dòng)點(diǎn).

1)求這個(gè)二次函數(shù)的解析式;

2)是否存在點(diǎn)P,使△POC是以OC為底邊的等腰三角形?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由;

3)動(dòng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PBC面積最大,求出此時(shí)P點(diǎn)坐標(biāo)和△PBC的最大面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案